The story so far

- We’ve now covered the main ingredients of any programming language:
 - Abstract syntax
 - Semantics/interpretation
 - Types
 - Variables and binding
 - Functions and recursion
- but the language is still very limited: there are no “data structures” (records, lists, variants), pointers, side-effects etc.
- Let alone even more advanced features such as classes, interfaces, or generics
- Over the next few lectures we will show how to add them, consolidating understanding of the foundations along the way.
Pairs

- The simplest way to combine data structures: pairing

\[(1, 2) \quad (\text{true, false}) \quad (1, (\text{true, } \lambda x : \text{int}. x + 2))\]

- If we have a pair, we can extract one of the components:

\[
\begin{align*}
\text{fst} (1, 2) & \rightsquigarrow 1 \\
\text{snd} (\text{true, false}) & \rightsquigarrow \text{false}
\end{align*}
\]

\[
\text{snd} (1, (\text{true, } \lambda x : \text{int}. x + 2)) \rightsquigarrow (\text{true, } \lambda x : \text{int}. x + 2)
\]

- Finally, we can often pattern match against a pair, to extract both components at once:

\[
\text{let pair } (x, y) = (1, 2) \text{ in } (y, x) \rightsquigarrow (2, 1)
\]
Pairs in various languages

<table>
<thead>
<tr>
<th>Haskell</th>
<th>Scala</th>
<th>Java</th>
<th>Python</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,2)</td>
<td>(1,2)</td>
<td>new Pair(1,2)</td>
<td>(1,2)</td>
</tr>
<tr>
<td>fst e</td>
<td>e._1</td>
<td>e.getFirst()</td>
<td>e[0]</td>
</tr>
<tr>
<td>snd e</td>
<td>e._2</td>
<td>e.getSecond()</td>
<td>e[1]</td>
</tr>
<tr>
<td>let (x,y) =</td>
<td>val (x,y) =</td>
<td>N/A</td>
<td>(x,y) =</td>
</tr>
</tbody>
</table>

- Functional languages typically have explicit syntax (and types) for pairs
- Java and C-like languages have “record”, “struct” or “class” structures that accommodate multiple, named fields.
 - A pair type can be defined but is not built-in and there is no support for pattern-matching
Syntax and Semantics of Pairs

- Syntax of pair expressions and values:

\[
e ::= \cdots | (e_1, e_2) | \text{fst } e | \text{snd } e
\]

\[
| \quad \text{let pair } (x, y) = e_1 \text{ in } e_2
\]

\[
v ::= \cdots | (v_1, v_2)
\]

- **e ⇓ v for pairs**

\[
\begin{align*}
e_1 \Downarrow v_1 & \quad e_2 \Downarrow v_2 \\
\frac{}{ (e_1, e_2) \Downarrow (v_1, v_2) } & \quad \frac{}{ \text{fst } e \Downarrow v_1 } & \quad \frac{}{ \text{snd } e \Downarrow v_2 } \\
\frac{}{ e_1 \Downarrow (v_1, v_2) } & \quad \frac{}{ e_2[v_1/x, v_2/y] \Downarrow v } & \quad \frac{}{ \text{let pair } (x, y) = e_1 \text{ in } e_2 \Downarrow v }
\end{align*}
\]
Types for Pairs

- Types for pair expressions:

\[\tau ::= \cdots | \tau_1 \times \tau_2 \]

\[\Gamma \vdash e : \tau \]

\[\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2 \]
\[\Gamma \vdash (e_1, e_2) : \tau_1 \times \tau_2 \]

\[\Gamma \vdash e : \tau_1 \times \tau_2 \]
\[\Gamma \vdash \text{fst } e : \tau_1 \]
\[\Gamma \vdash \text{snd } e : \tau_2 \]

\[\Gamma \vdash e_1 : \tau_1 \times \tau_2 \quad \Gamma, x : \tau_1, y : \tau_2 \vdash e_2 : \tau \]
\[\Gamma \vdash \text{let pair } (x, y) = e_1 \text{ in } e_2 : \tau \]
let vs. fst and snd

- The fst and snd operations are definable in terms of let pair:

 \[
 \text{fst } e \iff \text{let pair } (x, y) = e \text{ in } x \\
 \text{snd } e \iff \text{let pair } (x, y) = e \text{ in } y
 \]

- Actually, the let pair construct is definable in terms of let, fst, snd too:

 \[
 \text{let pair } (x, y) = e_1 \text{ in } e_2 \iff \text{let } p = e_1 \text{ in } e_2[fst } p/x, \text{snd } p/y]
 \]

- We typically just use the (simpler) fst and snd constructs and treat let pair as syntactic sugar.
More generally: tuples and records

- Nothing stops us from adding triples, quadruples, \ldots, \(n\)-tuples.

\[(1, 2, 3) \quad (\text{true}, 2, 3, \lambda x.(x, x))\]

- As mentioned earlier, many languages prefer named record syntax:

\[(a : 1, b : 2, c : 3) \quad (b : \text{true}, n_1 : 2, n_2 : 3, f : \lambda x.(x, x))\]

(cf. class fields in Java, structs in C, etc.)

- These are undeniably useful, but are definable using pairs.

- We’ll revisit named record-style constructs when we consider classes and modules.
Nothing stops us from adding a type of 0-tuples: a data structure with no data. This is often called the *unit type*, or unit.

\[
\begin{align*}
 e & ::= \cdots \mid () \\
 v & ::= \cdots \mid () \\
 \tau & ::= \cdots \mid \text{unit}
\end{align*}
\]

\[
() \Downarrow () \quad \Gamma \vdash () : \text{unit}
\]

This may seem a little pointless: why bother to define a type with no (interesting) data and no operations?

This is analogous to `void` in C/Java; in Haskell and Scala it is called `()`.
Motivation for variant types

Pairs allow us to combine two data structures (a τ_1 and a τ_2).

What if we want a data structure that allows us to choose between different options?

We’ve already seen one example: booleans.

- A boolean can be one of two values.
- Given a boolean, we can look at its value and choose among two options, using if then else.

Can we generalize this idea?
Another example: null values

- Sometimes we want to produce either a regular value or a special “null” value.
- Some languages, including SQL and Java, allow many types to have null values by default.
 - This leads to the need for defensive programming to avoid the dreaded NullPointerException in Java, or strange query behavior in SQL
 - Sir Tony Hoare (inventor of Quicksort) introduced null references in Algol in 1965 “simply because it was so easy to implement”!
 - he now calls them “the billion dollar mistake”:
Another problem with Null

How do I correctly pass the string “Null” (an employee's proper surname) to a SOAP web service from ActionScript 3?

We have an employee whose last name is Null. Our employee lookup application is killed when that last name is used as the search term (which happens to be quite often now). The error received (thanks Fiddler!) is:

```
<soapenv:Fault>
  <faultcode>soapenv:Server.userException</faultcode>
  <faultstring>coldfusion.xml.rpc.CFCInvocationException: [coldfusion.runtime.MissingArgument]
```

Cute, huh?

The parameter type is `string`.
What would be better?

- Consider an *option type*:

\[
e ::= \cdots \mid \text{none} \mid \text{some}(e)
\]

\[
\tau ::= \cdots \mid \text{option}[^\tau]
\]

\[
\Gamma \vdash e : \tau \\
\Gamma \vdash \text{none} : \text{option}[^\tau] \\
\Gamma \vdash \text{some}(e) : \text{option}[^\tau]
\]

- Then we can use *none* to indicate absence of a value, and *some(e)* to give the present value.

- Moreover, the *type* of an expression tells us whether null values are possible.
Error codes

- The option type is useful but still a little limited: we either get a τ value, or nothing
- If `none` means failure, we might want to get some more information about why the failure occurred.
- We would like to be able to return an `error code`
 - In older languages, notably C, special values are often used for errors
 - Example: `read` reads from a file, and either returns number of bytes read, or -1 representing an error
 - The actual error code is passed via a global variable
 - It’s easy to forget to check this result, and the function’s return value can’t be used to return data.
 - Other languages use `exceptions`, which we’ll cover much later
The OK-or-error type

- Suppose we want to return *either* a normal value τ_{ok} *or* an error value τ_{err}.
- Let’s write $\text{okOrErr}[\tau_{ok}, \tau_{err}]$ for this type.

$$
e ::= \cdots \mid \text{ok}(e) \mid \text{err}(e)
\tau ::= \cdots \mid \text{okOrErr}[\tau_1, \tau_2]
$$

- Basic idea:
 - if e has type τ_{ok}, then $\text{ok}(e)$ has type $\text{okOrErr}[\tau_{ok}, \tau_{err}]$
 - if e has type τ_{err}, then $\text{err}(e)$ has type $\text{okOrErr}[\tau_{ok}, \tau_{err}]$
How do we use $\text{okOrErr}[\tau_{ok}, \tau_{err}]$?

- When we talked about $\text{option}[^\tau]$, we didn’t really say how to use the results.
- If we have a $\text{okOrErr}[\tau_{ok}, \tau_{err}]$ value v, then we want to be able to branch on its value:
 - If v is $\text{ok}(v_{ok})$, then we probably want to get at v_{ok} and use it to proceed with the computation.
 - If v is $\text{err}(v_{err})$, then we probably want to get at v_{err} to report the error and stop the computation.
- In other words, we want to perform case analysis on the value, and extract the wrapped value for further processing.
Case analysis

- We consider a case analysis construct as follows:

\[
\text{case } e \text{ of } \{ \text{ok}(x) \Rightarrow e_{ok} ; \text{err}(y) \Rightarrow e_{err} \}
\]

- This is a generalized conditional: “If \(e \) evaluates to \(\text{ok}(v_{ok}) \), then evaluate \(e_{ok} \) with \(v_{ok} \) replacing \(x \), else it evaluates to \(\text{err}(v_{err}) \) so evaluate \(e_{err} \) with \(v_{err} \) replacing \(y \).”

- Here, \(x \) is bound in \(e_{ok} \) and \(y \) is bound in \(e_{err} \)

- This construct should be familiar by now from Scala:

```scala
  e match { case Ok(x) => e1
                 case Err(x) => e2
  } // note slightly different syntax
```
Variant types, more generally

- Notice that the `ok` and `err` cases are completely symmetric.
- Generalizing this type might also be useful for other situations than error handling...
- Therefore, let’s rename and generalize the notation:

\[
\begin{align*}
 e &::= \cdots \mid \text{left}(e) \mid \text{right}(e) \\
 &\mid \text{case } e \text{ of } \{\text{left}(x) \Rightarrow e_1 ; \text{right}(y) \Rightarrow e_2\} \\
 v &::= \cdots \mid \text{left}(v) \mid \text{right}(v) \\
 \tau &::= \cdots \mid \tau_1 + \tau_2
\end{align*}
\]

- We will call type $\tau_1 + \tau_2$ a variant type (sometimes also called sum or disjoint union).
Types for variants

- We extend the typing rules as follows:

\[\Gamma \vdash \tau \]

for variant types

\[
\Gamma \vdash e : \tau_1 \\
\Gamma \vdash \left(e\right) : \tau_1 + \tau_2
\]

\[
\Gamma \vdash e : \tau_2 \\
\Gamma \vdash \right(e) : \tau_1 + \tau_2
\]

\[
\Gamma \vdash e : \tau_1 + \tau_2 \\
\Gamma, x : \tau_1 \vdash e_1 : \tau \\
\Gamma, y : \tau_2 \vdash e_2 : \tau \\
\Gamma \vdash \text{case } e \text{ of } \{\left(x\right) \Rightarrow e_1 ; \right(y) \Rightarrow e_2\} : \tau
\]

- Idea: left and right “wrap” \(\tau_1 \) or \(\tau_2 \) as \(\tau_1 + \tau_2 \)

- Idea: Case is like conditional, only we can use the wrapped value extracted from \(\left(v\right) \) or \(\right(v) \).
Semantics of variants

- We extend the evaluation rules as follows:

<table>
<thead>
<tr>
<th>e ⇓ v for variant types</th>
</tr>
</thead>
<tbody>
<tr>
<td>[e \downarrow v \quad \text{left}(e) \downarrow \text{left}(v) \quad \text{right}(e) \downarrow \text{right}(v)]</td>
</tr>
<tr>
<td>[e \downarrow \text{left}(v_1) \quad e_1[v_1/x] \downarrow v]</td>
</tr>
<tr>
<td>[\text{case} \ e \text{ of } { \text{left}(x) \Rightarrow e_1 ; \text{right}(y) \Rightarrow e_2 } \downarrow v]</td>
</tr>
<tr>
<td>[e \downarrow \text{right}(v_2) \quad e_2[v_2/y] \downarrow v]</td>
</tr>
<tr>
<td>[\text{case} \ e \text{ of } { \text{left}(x) \Rightarrow e_1 ; \text{right}(y) \Rightarrow e_2 } \downarrow v]</td>
</tr>
</tbody>
</table>

- Creating a $\tau_1 + \tau_2$ value is straightforward.
- Case analysis branches on the $\tau_1 + \tau_2$ value
Defining Booleans and option types

- The Boolean type bool can be defined as \(\text{unit} + \text{unit} \)

 \[
 \text{true} \iff \text{left}(()) \quad \text{false} \iff \text{right}()
 \]

- Conditional is then defined as case analysis, ignoring the variables

 \[
 \text{if } e \text{ then } e_1 \text{ else } e_2 \iff \text{case } e \text{ of } \{ \text{left}(x) \Rightarrow e_1 ; \text{right}(y) \Rightarrow e_2 \}\n \]

- Likewise, the option type is definable as \(\tau + \text{unit} \):

 \[
 \text{some}(e) \iff \text{left}(e) \quad \text{none} \iff \text{right}()
 \]
Datatypes: named variants and case classes

- Programming directly with binary variants is awkward.
- As for pairs, the $\tau_1 + \tau_2$ type can be generalized to n-ary choices or *named variants*.
- As we saw in Lecture 1 with abstract syntax trees, variants can be represented in different ways:
 - Haskell supports “datatypes” which give constructor names to the cases.
 - In Java, can use classes and inheritance to simulate this, verbosely (Python similar).
 - Scala does not directly support named variant types, but provides “case classes” and pattern matching.
 - We’ll revisit case classes and variants later in discussion of object-oriented programming.
The empty type

- We can also consider the 0-ary variant type

\[\tau ::= \cdots | \text{empty} \]

with *no* associated expressions or values
- Scala provides `Nothing` as a built-in type; most languages do not
 - [Perhaps confusingly, this is not the same thing at all as the `void` or `unit` type!]
- We will talk about `Nothing` again when we cover *subtyping*
 - (Insert *Seinfeld* joke here, if anyone is old enough to remember that.)
Summary

Today we’ve covered two primitive types for structured data:

- Pairs, which combine two or more data structures
- Variants, which represent alternative choices among data structures
- Special cases (unit, empty) and generalizations (records, datatypes)

This is a pattern we’ll see over and over:

- Define a type and expressions for creating and using its elements
- Define typing rules and evaluation rules

Next time:

- Named records and variants
- Subtyping