
Elements of Programming Languages
Tutorial 4: Subtyping and polymorphism

Solution notes

1. Subtyping and type bounds

(a)

Sub1 <: Super Sub2 <: Super

(b) i. Sub1× Sub2 <: Super × Super This holds:

Sub1 <: Super Sub2 <: Super

Sub1× Sub2 <: Super × Super

ii. Sub1 → Sub2 <: Super → Super This does not hold since Super <: Sub1 doesn’t.

???
Super <: Sub1 Sub2 <: Super

Sub1 → Sub2 <: Super → Super

iii. Super → Super <: Sub1 → Sub2 This does not hold since Super <: Sub2 doesn’t.

Sub1 <: Super
???

Super <: Sub2

Super → Super <: Sub1 → Sub2

iv. Super → Sub1 <: Sub2 → Super This holds:

Sub1 <: Super Sub2 <: Super

Super → Sub1 <: Sub2 → Super

v. (⋆) (Sub1 → Sub1) → Sub2 <: (Super → Sub1) → Super This holds:

Sub1 <: Super Sub1 <: Sub1

Super → Sub1 <: Sub1 → Sub1 Sub2 <: Super

(Sub1 → Sub1) → Sub2 <: (Super → Sub1) → Super

(c) If we call f1 on Sub2(true) then the result has type Super. We can’t access the b field because of a
type mismatch.

(d) This typechecks, because in either case we return x which has type A. If we apply it to a value of
type Sub1 or Sub2 we get the same value back. If we apply it to 42 : Int then we get a match error.

(e) This typechecks, because as for f2 we return x : A in either case. However, now if we apply to
Sub1 or Sub2 we get the same value back, while if we apply to something of an unrelated type we
get a type error. This seems to solve the problem.

2. Subtyping and Contravariance

(a) f could call its function argument on any Shape, e.g. either Circle or Rectangle. Thus, calling f on
a function of type Rectangle => Int is not allowed, because Rectangle => Int is not a subtype
of Shape => Int. If this call was executed, then f could call its argument on a Circle, which would
not match the expected Rectangle argument type.

1



(b) g can only call its function argument on a Circle. Thus, calling g on a function of type Shape => Int

is allowed, because Shape => Int is a subtype of Circle => Int. If we execute this call, then what-
ever g does with its function argument will be fine, since the expected type of the function argument
is Shape, so it can handle any particular type of shape such as Circle.

3. Type parameters

(a)

abstract class Tree[A]
case class Leaf[A](a: A) extends Tree[A]
case class Node[A](t1: Tree[A], t2: Tree[A]) extends Tree[A]

(b)

def sum(t: Tree[Int]) : Int = t match {
case Leaf(a) => a
case Node(t1,t2) => sum(t1) + sum(t2)

}

(c)

def map[A,B](t: Tree[A])(f: A => B): Tree[B] = t match {
case Leaf(a) => Leaf(f(a))
case Node(t1,t2) => Node(map(t1)(f), map(t2)(f))

}

(d)

def flatten[A](t: Tree[Tree[A]]): Tree[A] = t match {
case Leaf(u) => u
case Node(t1,t2) => Node(flatten(t1),flatten(t2))

}

(e)

def flatMap(t: Tree[A])(f: A => Tree[B]) = flatten(map(t)(f))

2


