
Elements of Programming Languages
Tutorial 8: References and laziness

Solution notes

1. Semantics of references

(a) The obvious rules are as follows:

σ, e 7→ σ′, e′

σ, e1 7→ σ′, e′1
σ, e1; e2 7→ σ′, e′1; e2 σ, v; e2 7→ σ, e2

(b) The derivation should look like this:

let r = ref(ref(42)) in !(!(r))

7→ [ℓ1 = 42], let r = ref(ℓ1) in !(!(r))

7→ [ℓ1 = 42, ℓ2 = ℓ1], let r = ℓ2 in !(!(r))

7→ [ℓ1 = 42, ℓ2 = ℓ1], !(!(ℓ2))

7→ [ℓ1 = 42, ℓ2 = ℓ1], !(ℓ1)

7→ [ℓ1 = 42, ℓ2 = ℓ1], 42

It may also be helpful to draw a “box and arrow” picture showing the reference contents as cells
with arrows linking them.

(c) The derivation should look like this:

let r = ref(λx. x) in r := (λx. x+ 1); (!r)(true)

7→ [ℓ = λx. x], let r = ℓ in r := (λx. x+ 1); !r(true)

7→ [ℓ = λx. x], ℓ := (λx. x+ 1); !ℓ(true)

7→ [ℓ = λx. x+ 1], (); !ℓ(true)

7→ [ℓ = λx. x+ 1], !ℓ(true)

7→ [ℓ = λx. x+ 1], !ℓ(λx.x+ 1)(true)

7→ [ℓ = λx. x+ 1], true+ 1

2. Interaction of references and evaluation order

(a) call-by-value
In call-by-value, the argument will be evaluated before the function is called, so x will be incre-
mented (with new value 43) and then dereferenced, and 43 will be passed into the function. 43 will
be printed twice.

(b) call-by-name
In call-by-name, the argument will be passed in as an unevaluated expression. During the first
print operation, x will be incremented to 43 and 43 will be printed. Likewise in the second print
operation, x will be incremented to 44 and 44 will be printed.

(c) call-by-need / lazy evaluation
In call-by-need, the argument is replaced by a reference to the unevaluated expression. The first
time it is needed, during the first print operation, it is evaluated, causing x to be incremented to 43
and then dereferenced, and the value 43 replaces the expression in the reference, and finally 43 is
printed. The second time it is needed, the value 43 is looked up and printed again.
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3. Embedding LWhile in Scala

(a) The intended solution is as follows:

val skip = ()
def seq(s1: => Unit,s2: => Unit) = {
s1
s2

}
def assign[T](x: Ref[T], e: => T) = x.set(e)
def ifthenelse(e: => Boolean, s1: => Unit, s2: => Unit) = {
if (e) {s1} else {s2}

}
def whiledo(e: => Boolean, s: => Unit): Unit = {
if (e) {
s
whiledo(e,s)

}
}

(b) The statements may contain code that does not (and should not) be run. For example, in ifthenelse

the non-taken branch should not be executed – doing so could result in incorrect side-effects. The
expressions and statements may depend on (or update) references, and we may need to evaluate
them more than once, or in a different state than the one present when the statement operation was
called. For example, with whiledo, the e argument may need to be evaluated many times. If we
passed this argument by value, then it would be evaluated only once to a fixed Boolean value and
not re-evaluated after the first iteration, so the loop would either run forever or halt immediately.

(c) (⋆) Variable occurrences in expressions correspond to dereferences !x. So, we need to replace such
occurrences with x.get.

4. (⋆) Stream programming

(a) const:

def const[A](a: A): Stream[A] = SCons(a,() => const[A](a))

(b) take:

def take[A](n: Int,s: Stream[A]): List[A] = (n,s) match {
case (0,_) => List()
case (n,SCons(a,f)) => a :: take(n-1,f())
case (_,Empty) => List()

}

(c) repeat:

def repeat[A](a: A)(f: A => A): Stream[A] =
SCons(a,() => repeat(f(a))(f))

(d) map:

def map[A,B](s: Stream[A])(f: A => B): Stream[B] = s match {
case SCons(a,s) => SCons(f(a),() => map(s())(f))
case Empty => Empty

}
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