
Elements of Programming Languages
Tutorial 2: Substitution and alpha-equivalence

Week 4 (October 9–13, 2023)

Exercises marked ⋆ are more advanced. Please try all unstarred exercises before
the tutorial meeting.

This tutorial will use the following language:

e ::= n | e1 ⊕ e2 LArith
| b | e1 == e2 | if e then e1 else e2 LIf
| x | let x = e1 in e2 LLet
| λx:τ. e | e1 e2 LLam

and the associated typing and evaluation rules covered in lectures.

1. Evaluation

(a) Write evaluation derivations showing the result value of the following
expressions:

• (λx:int. x) 1

• (λx:int. x+ 1) 42

• ((λx:int → int. x) (λx:int. x)) 1

• (⋆) (λf :int → int. λx:int.f (f x)) (λx:int. x+ 1) 42

(b) (⋆) In LLam, the let operation is definable: that is, we can transform an
expression let x = e1 in e2 to an expression not involving let with the
same evaluation behavior. Give such an expression, and show that the
evaluation rule for let can be obtained from other rules.

2. Typechecking

(a) Write Scala terms using anonymous functions (not def) having the fol-
lowing types, using only variables and applications in the function body
(that is, without using constants or primitive operations):

• Int => Int

• Int => Boolean => Int

• (Int => Boolean => String) => (Int => Boolean) => (Int => String)

(b) Write typing derivations, and identify the result type, for the following
closed expressions, or explain why the expression is not typable.

• (λx:int. x) 1

• (λx:int. x+ 1) 42

• (λx:int → int. x) (λx:int. x)

• (⋆) (λx:τ. x x)

1

3. Alpha-equivalence for LLam In lecture 4, we defined α-equivalence infor-
mally in terms of α-conversion. We can define it directly for LLet as follows:

e ≡α e

e1 ≡α e′1 e2 ≡α e′2
e1 ⊕ e2 ≡α e′1 ⊕ e′2

· · ·
e1 ≡α e′1 e2(x↔z) ≡α e′2(y↔z) z /∈ FV (e2, e

′
2)

let x = e1 in e2 ≡α let y = e′1 in e′2

where the last rule amounts to alpha-converting the two let-expressions so
that they use the same bound name z, and then checking that their compo-
nents are equivalent.

(a) Write out the missing rules for α-equivalence for the expressions of LIf
and LLam. (Recall that x is bound in e in λx. e.)

(b) Which of the following alpha-equivalence relationships hold?

if true then y else z ≡α y
let x = y in (if x then y else z) ≡α let z = y in (if x then y else z)

λx. (let y = x in y + y) ≡α λx. (let x = x in x+ x)

(c) (⋆) The binding structure of an expression can be visualized by drawing
an abstract syntax tree with edges linking the “binding” and “bound”
occurrences of variables. Draw abstract syntax trees with binding edges
in this way for the following terms:

• let x = 1 in let y = 2 in x+ y

• λx. λy. x+ y

• λx. λx. x+ x

• let x = 1 in λy. x+ y

4. (⋆) Naive substitution and variable capture
In lecture 4, we discussed how to substitute values for variables. In this ex-
ercise we consider the following definition of substitution of expressions for
variables.

v[e/x] = v

x[e/x] = e

y[e/x] = y (x ̸= y)

(e1 ⊕ e2)[e/x] = e1[e/x]⊕ e2[e/x]

(if e0 then e1 else e2)[e/x] = if e0[e/x] then e1[e/x] else e2[e/x]

(let y = e1 in e2)[e/x] = let y = e1[e/x] in e0[e/x]

(λy. e0)[e/x] = λy. e0[e/x]

Variable capture occurs when a substitution changes the binding structure of
an expression. This definition is naive because it permits variable capture.

(a) Perform the following substitutions using the naive definition.

(λy. λz. ((x+ y) + z))[y × z/x] = ???

(if x == y then λz.x else λx.x)[z/x] = ???

(b) Next, α-convert the expressions above to use fresh bound names such
as a, b, c, d.

(c) Finally, perform the above substitutions on the α-converted expressions.
Are the results α-equivalent?

2

