Elements of Programming Languages Tutorial 5: Modules and Objects Week 7 (October 30-November 3, 2023)

Exercises marked \star are more advanced. Please try all unstarred exercises before the tutorial meeting.

1. Typing derivations

Construct typing derivations for the following expressions, or argue why they are not well-formed:
(a) $\Lambda A \cdot \lambda x: A \cdot x+1$
(b) (\star) $\Lambda A . \lambda x: A \times A$.if fst $x==$ snd x then fst x else snd x (and how does its well-formedness depend on the typing rule for equality?)

2. Evaluation derivations

Construct evaluation derivations for the following expressions, or explain why they do not evaluate:
(a) $(\Lambda A \cdot \lambda x: A \cdot x+1)[$ int $] 42$
(b) $(\Lambda A \cdot \lambda x: A \cdot x+1)[$ bool $]$ true
3. (\star) Lists and polymorphism

Recall the proposed rules for lists from the previous tutorial.

$$
\begin{aligned}
e & ::=\cdots|\operatorname{nil}| e_{1}:: e_{2} \mid \text { case }_{\text {list }} e \text { of }\left\{\text { nil } \Rightarrow e_{1} ; x:: y \Rightarrow e_{2}\right\} \\
v & ::=\cdots|\operatorname{nil}| v_{1}:: v_{2} \\
\tau & ::=\cdots \mid \operatorname{list}[\tau]
\end{aligned}
$$

Define $L_{\text {List }}$ to be $L_{\text {Poly }}$ extended with the above constructs.
(a) Write a polymorphic function map that has this type:

$$
\forall A . \forall B .(A \rightarrow B) \rightarrow(\text { list }[A] \rightarrow \text { list }[B])
$$

so that $\operatorname{map}(f)(l)$ is the function that traverses a list of A^{\prime} 's and, for each element x in l, applies the function f to it.
(b) Write out a typing derivation tree for the expression

$$
\operatorname{map}[\text { int }][\text { int }](\lambda x . x+1)(2:: \text { nil })
$$

assuming that map has the type given above.
(c) Are lists and their associated operations definable in LPoly already? Why or why not?

4. Modules and Interfaces in Scala

Consider the following Scala object definition.

```
object A {
    type T = Int
    val c: T = 1
    val d: T = 2
    def f(x: T, y:T): T = x + y
}
object B {
    type T = String
    val c: T = "abcd"
    val d: T = "1234"
    def f(x: T, y: T) = x + y
}
```

(a) Write expressions showing how to access each of the elements of A and B.
(b) Suppose we execute the import statements
import A._
import B.-
after finishing the declaration of A. What does unqualified identifier d refer to after that? What if we import in the opposite order?
(c) (\star) Construct a Scala trait ABlike defining bindings for all of the components of A and B, and so that we can assert that both A and B extend ABlike.
(d) (\star) Define a function g taking an argument x : ABlike that applies f to c and d. Apply it to both instances of ABlike above. What is its return type?
(e) (\star) Create an anonymous instance of ABlike with $T=$ Boolean and call the function g on it.
5. (\star) Ad hoc polymorphism

Traits can also accommodate overloading and reuse of the same name for operations on different types. An operation such as size can be defined as part of a trait as follows:

```
trait HasSize { def size(): Int }
```

(a) Modify the definition of List [A] above so that it extends HasSize, and define an appropriate size method for it.
(b) Modify the definition of Tree [A] so that it extends HasSize and define its size operation.
(c) Write a function sameSize that takes two values of type HasSize and checks whether they have the same size.
(d) Call this function on a List [Int] and a Tree [String] to verify that the correct implementations of size are called for different types.

