Elements of Programming Languages Tutorial 7: Small-step semantics and type soundness Week 9 (November 13-17, 2023)

Exercises marked \star are more advanced. Please try all unstarred exercise before the tutorial meeting.

1. Imperative programming

Write evaluation derivations for the following imperative programs, starting with the environment $\sigma=[x=3, y=4]$.
(a) $y:=x+x$
(b) if $x==y$ then $x:=x+1$ else $y:=y+2$
(c) (\star) while $x<y$ do $x:=x+1$

2. Comparing large-step and small-step derivations

Write both large-step and small-step derivations for the following expressions. For the small-step derivations, construct the derivations of each $e \mapsto e^{\prime}$ step explicitly.
(a) $(\lambda x \cdot x+1) 42$
(b) $(\lambda x$.if $x==1$ then 2 else $x+1) 42$
3. Small-step derivations that go wrong

For each of the following expressions, show the small-step evaluation leading to the point where evaluation becomes stuck due to a dynamic type error. (There is no need to show the derivations of each step.)
(a) $((\lambda x \cdot \lambda y$.let $z=x+y$ in $z+1) 42)$ true
(b) (λx.if x then $x+1$ else $x+2)$ true
4. Small-step rules for $L_{\text {Data }}$

Recall that we defined the semantics for $L_{\text {Data }}$ using big-step rules, as follows:
$e \Downarrow v$

$$
\begin{array}{ccc}
\frac{e_{1} \Downarrow v_{1}}{\left(e_{1}, e_{2}\right) \Downarrow\left(v_{1}, v_{2}\right)} & \frac{e \Downarrow\left(v_{1}, v_{2}\right)}{\text { fst } e \Downarrow v_{1}} & \frac{e \Downarrow\left(v_{1}, v_{2}\right)}{\operatorname{snd} e \Downarrow v_{2}} \\
\frac{e \Downarrow v}{\operatorname{left}(e) \Downarrow \operatorname{left}(v)} \quad \frac{e \Downarrow \operatorname{left}\left(v_{1}\right)}{} \quad e_{1}\left[v_{1} / x\right] \Downarrow v \\
\frac{e \Downarrow v}{\operatorname{right}(e) \Downarrow \operatorname{right}(v)} \quad \stackrel{\text { of }\left\{\operatorname{left}(x) \Rightarrow e_{1} ; \operatorname{right}(y) \Rightarrow e_{2}\right\} \Downarrow v}{\text { case } e \text { of }\left\{\operatorname{left}(x) \Rightarrow e_{1} ; \operatorname{right}(y) \Rightarrow e_{2}\right\} \Downarrow v}
\end{array}
$$

(a) For each construct, write out equivalent small-step rules. Are there any design choices in translating the big-step rules to small-step rules?
(b) (\star) Construct small-step derivations reducing the following expressions to values:
i. $(\lambda p$. (snd p, fst $p+2))(17,42)$
ii. $(\lambda x . \operatorname{case} x$ of $\{\operatorname{left}(y) . y+1 ; \operatorname{right}(z) . z\})(\operatorname{left}(42))$

5. (\star) Type soundness for nondeterminism

This question builds on the nondeterministic choice construct mentioned in an earlier tutorial, with the following typing rules:
$\Gamma \vdash e: \tau$

$$
\frac{\Gamma \vdash e_{1}: \tau \quad \Gamma \vdash e_{2}: \tau}{\Gamma \vdash e_{1} \square e_{2}: \tau}
$$

and small-step evaluation rules:
$e \mapsto e^{\prime}$

$$
\overline{e_{1} \square e_{2} \mapsto e_{1}} \quad \overline{e_{1} \square e_{2} \mapsto e_{2}}
$$

(a) State the preservation property. Outline how we could prove the cases of preservation for nondeterministic expressions.
(b) State the progress property. Outline how we could prove the cases of progress for nondeterministic expressions.

