
Objects and Classes Advanced constructs

Elements of Programming Languages
Lecture 10: Objects and Classes

James Cheney

University of Edinburgh

October 24, 2024



Objects and Classes Advanced constructs

Overview

Last time: “programming in the large”

Programs, packages/namespaces, importing
Modules and interfaces
Mostly: using Scala for examples

Today: the elephant in the room:

Objects and Classes
A taste of “advanced” OOP constructs: inner classes,
anonymous objects and mixins
Illustrate using examples in Scala, and some comparisons
with Java



Objects and Classes Advanced constructs

Objects

An object is a module with some additional properties:

Encapsulation: Access to an object’s components can
be limited to the object itself (or to a subset of objects)
Self-reference: An object is a value and its methods
can refer to the object’s fields and methods (via an
implicit parameter, often called this or self)
Inheritance: An object can inherit behavior from
another “parent” object

Objects/inheritance are tied to classes in some (but not
all) OO languages

In Scala, the object keyword creates a singleton object
(“class with only one instance”)

(in Java, objects can only be created as instances of
classes)



Objects and Classes Advanced constructs

Self-Reference

Inside an object definition, the this keyword refers to the
object being defined.

This provides another form of recursion:

object Fact {

def fact (n: Int): Int = {

if (n == 0) {1} else {n * this.fact(n-1)}

}

}

Moreover, as we’ll see, the recursion is open: the method
that is called by this.foo(x) depends on what this is at
run time.



Objects and Classes Advanced constructs

Encapsulation and Scope

An object can place restrictions on the scope of its
members

Typically used to prevent external interference with
‘internal state’ of object

For example: Java, C++, C# all support

private keyword: “only visible to this object”
public keyword: “visible to all”

Java: package scope (default): visible only to other
components in the same package

Scala: private[X] allows qualified scope: “private to
(class/object/trait/package) X”

Python, Javascript: don’t have (enforced) private scope
(relies on programmer goodwill)



Objects and Classes Advanced constructs

Classes

A class is an interface with some additional properties:

Instantiation: classes can describe how to construct
associated objects (instances of the class)
Inheritance: classes may inherit from zero or more
parent classes as well as implement zero or more
interfaces
Abstraction: Classes may be abstract, that is, may
name but not define some fields or methods
Dynamic dispatch: The choice of which method is
called is determined by the run-time type of a class
instance, not the static type available at the call

Not all object-oriented languages have classes!

Smalltalk, JavaScript are well-known exceptions
Such languages nevertheless often use prototypes, or
commonly-used objects that play a similar role to classes



Objects and Classes Advanced constructs

Constructing instances

Classes typically define special functions that create new
instances, called constructors

In C++/Java, constructors are defined explicitly and
separately from the initialized data
In Scala, there is usually one “default” constructor
whose parameters are in scope in the whole class body
(additional constructors can be defined as needed)

Constructors called with the new keyword

class C(x: Int, y: String) {

val i = x

val s = y

def this(x: Int) = this(x,"default")

}

scala> val c1 = new C(1,"abc")

scala> val c2 = new C(1)



Objects and Classes Advanced constructs

Inheritance

An object can inherit from another.

This means: the parent object, and its components,
become “part of” the child object

accessible using super keyword
(though some components may not be directly
accessible)

In Java (and Scala), a class extends exactly one
superclass (Object, if not otherwise specified)

In C++, a class can have multiple superclasses

Non-class-based languages, such as JavaScript and
Smalltalk, support inheritance directly on objects via
extension



Objects and Classes Advanced constructs

Subtyping

As (briefly) mentioned last week, an object Obj that
extends a trait Tr is automatically a subtype (Obj <: Tr)

Likewise, a class Cl that extends a trait Tr is a subtype of
Tr (Cl <: Tr)

A class (or object) Sub that extends another class Super
is a subtype of Super (Sub <: Super)

However, subtyping and inheritance are distinct features:

As we’ve already seen, subtyping can exist without
inheritance
moreover, subtyping is about types, whereas inheritance
is about behavior (code)



Objects and Classes Advanced constructs

Inheritance and encapsulation

Inheritance complicates the picture for encapsulation
somewhat.

private keyword prevents access from outside the class
(including any subclasses).

protected keyword means “visible to instances of this
object and its subclasses”

Scala: Both private and protected can be qualified
with a scope [X] where X is a package, class or object.

class A { private[A] val a = 1

protected[A] val b = 2 }

class B extends A {

def foo() = a + b

} // "a" not found



Objects and Classes Advanced constructs

Cross-instance sharing

Classes in Java can have static fields/members that are
shared across all instances

Static methods can access private fields and methods

static is also allowed in interfaces (but only as of Java 8)

Class with only static members ∼ module

C++: friend keyword allows sharing between classes on
a case-by-case basis



Objects and Classes Advanced constructs

Companion Objects

Scala has no static keyword

Scala instead uses companion objects

Companion = object with the same name as the class
and defined in the same scope
Companions can access each others’ private
components

object Count { private var x = 1 }

class Count { def incr() = {Count.x = Count.x+1} }

Note: This can only be done in compiled code, not
interactively

(More precisely, in interactive code the object and class
need to be defined at the same time)



Objects and Classes Advanced constructs

Multiple inheritance and the diamond problem

As noted, C++ allows multiple inheritance

Suppose we did this (in Scala terms):

class Win(val x: Int, val y: Int)

class TextWin(...) extends Win

class GraphicsWin(...) extends Win

class TextGraphicsWin(...)

extends TextWin and GraphicsWin

In C++, this means there are two copies of Win inside
TextGraphicsWin

They can easily become out of sync, causing problems

Multiple inheritance is also difficult to implement
(efficiently); many languages now avoid it



Objects and Classes Advanced constructs

Abstraction

A class may leave some components undefined
Such classes must be marked abstract in Java, C++
and Scala
To instantiate an abstract class, must provide definitions
for the methods (e.g. in a subclass)

Abstract classes can define common behavior to be
inherited by subclasses
In Scala, abstract classes can also have unknown type
components

(optionally with subtype constraints)

abstract class ConstantVal {

type T <: AnyVal

val c: T

} // a constant of any value type



Objects and Classes Advanced constructs

Dynamic dispatch

An abstract method can be implemented in different ways
by different subclasses

When an abstract method is called on an instance, the
corresponding implementation is determined by the
run-time type of the instance.

(necessarily in this case, since the abstract class provides
no implementation)

abstract class A { def foo(): String}

class B extends A { def foo() = "B"}

class C extends A { def foo() = "C" }

scala> val b:A = new B

scala> val c:A = new C

scala> (b.foo(), c.foo())



Objects and Classes Advanced constructs

Overriding

An inherited method that is already defined by a
superclass can be overridden in a subclass
This means that the subclass’s version is called on that
subclass’s instances using dynamic dispatch
In Java, @Override annotation is optional, checked
documentation that a method overrides an inherited
method
In Scala, must use override keyword to clarify intention
to override a method

class A { def foo() = "A"}

class B extends A { override def foo() = "B" }

scala> val b: A = new B

scala> b.foo()

class C extends A { def foo() = "C" } // error



Objects and Classes Advanced constructs

Type tests and coercions

Given x: A, Java/Scala allow us to test whether its
run-time type is actually subclass B

scala> b.isInstanceOf[B]

and to coerce such a reference to y: B

scala> val b2: B = b.asInstanceOf[B]

Warning: these features can be used to violate type
abstraction!

def weird[A](x: A) = if (x.isInstanceOf[Int]) {

(x.asInstanceOf[Int]+1).asInstanceOf[A]

} else {x}



Objects and Classes Advanced constructs

Advanced constructs

So far, we’ve covered the “basic” OOP model (circa Java
1.0)

Modern languages extend this in several ways

We can define a class/object inside another class:

As a member of the enclosing class (tied to a specific
instance)
or as a static member (shared across all instances)
As a local definition inside a method
As an anonymous local definition

Some languages also support mixins (e.g. Scala traits)

Scala supports similar, somewhat more uniform
composition of classes, objects, and traits



Objects and Classes Advanced constructs

Classes/objects as members

In Scala, classes and objects (and traits) can be nested
arbitrarily

class A { object B { val x = 1 } }

scala> val a = new A

object C {class D { val x = 1 } }

scala> val d = new C.D

class E { class F { val x = 1 } }

scala> val e = new E

scala> val f = new e.F



Objects and Classes Advanced constructs

Summary

Today

Objects, encapsulation, self-reference
Classes, inheritance, abstraction, dynamic dispatch

This is only the tip of a very large iceberg...

there are almost as many “object-oriented”
programming models as languages
the design space, and “right” formalisms, are still active
areas of research

Next time:

Inner classes, anonymous objects, mixins, parameterized
types
Combining object-oriented and functional programming


	Objects and Classes
	Advanced constructs

