
While-programs Structured control and procedures Unstructured control

Elements of Programming Languages
Lecture 12: Imperative programming

James Cheney

University of Edinburgh

October 31, 2024

While-programs Structured control and procedures Unstructured control

The story so far

So far we’ve mostly considered pure computations.

Once a variable is bound to a value, the value never
changes.

that is, variables are immutable.

This is not how most programming languages treat
variables!

In most languages, we can assign new values to
variables: that is, variables are mutable by default

Just a few languages are completely “pure” (Haskell).

Others strike a balance:

e.g. Scala distinguishes immutable (val) variables and
mutable (var) variables
similarly const in Java, C

While-programs Structured control and procedures Unstructured control

Mutable vs. immutable

Advantages of immutability:

Referential transparency (substitution of equals for
equals); programs easier to reason about and optimize
Types tell us more about what a program can/cannot do

Advantages of mutability:

Some common data structures easier to implement
Easier to translate to machine code (in a
performance-preserving way)
Seems closely tied to popular OOP model of “objects
with hidden (mutable) state and public methods”

Today we’ll consider programming with assignable
variables and loops (LWhile) and then discuss procedures
and other forms of control flow

While-programs Structured control and procedures Unstructured control

While-programs

Let’s start with a simple example: LWhile, with statements

Stmt ∋ s ::= skip | s1; s2 | x := e

| if e then s1 else s2 | while e do s

skip does nothing

s1; s2 does s1, then s2

x := e evaluates e and assigns the value to x

if e then s1 else s2 evaluates e, and evaluates s1 or s2
based on the result.

while e do s tests e. If true, evaluate s and loop;
otherwise stop.

We typically use {} to parenthesize statements.

While-programs Structured control and procedures Unstructured control

A simple example: factorial again

In Scala, mutable variables can be defined with var

var n = ...

var x = 1

while(n > 0) {

x = n * x

n = n-1

}

In LWhile, all variables are mutable

x := 1; while (n > 0) do {x := n ∗ x ; n := n − 1}

While-programs Structured control and procedures Unstructured control

An interpreter for LWhile

We will define a pure interpreter:

def exec(env: Env[Value], s: Stmt): Env[Value] =

s match {

case Skip => env

case Seq(s1,s2) =>

val env1 = exec(env, s1)

exec(env1,s2)

case IfThenElseS(e,s1,s2) => eval(env,e) match {

case BoolV(true) => exec(env,s1)

case BoolV(false) => exec(env,s2)

}

...

}

While-programs Structured control and procedures Unstructured control

An interpreter for LWhile

def exec(env: Env[Value], s: Stmt): Env[Value] =

s match {

...

case WhileDo(e,s) => eval(env, e) match {

case BoolV(true) =>

val env1 = exec(env,s)

exec(env1, WhileDo(e,s))

case BoolV(false) => env

}

case Assign(x,e) =>

val v = eval(env,e)

env + (x -> v)

}

While-programs Structured control and procedures Unstructured control

While-programs: evaluation

σ, s ⇓ σ′

σ, skip ⇓ σ

σ, s1 ⇓ σ′ σ′, s2 ⇓ σ′′

σ, s1; s2 ⇓ σ′′

σ, e ⇓ true σ, s1 ⇓ σ′

σ, if e then s1 else s2 ⇓ σ′
σ, e ⇓ false σ, s2 ⇓ σ′

σ, if e then s1 else s2 ⇓ σ′

σ, e ⇓ true σ, s ⇓ σ′ σ′, while e do s ⇓ σ′′

σ, while e do s ⇓ σ′′

σ, e ⇓ false

σ, while e do s ⇓ σ

σ, e ⇓ v

σ, x := e ⇓ σ[x := v]

Here, we use evaluation in context σ, e ⇓ v (cf.
Assignment 2)

While-programs Structured control and procedures Unstructured control

Examples

x := y + 1; z := 2 ∗ x

σ1, y + 1 ⇓ 2
σ1, x := y + 1 ⇓ σ2

σ2, 2 ∗ x ⇓ 4
σ2, z := 2 ∗ x ⇓ σ3

σ1, x := y + 1; z := 2 ∗ x ⇓ σ3

where

σ1 = [y := 1]

σ2 = [x := 2, y := 1]

σ3 = [x := 2, y := 1, z := 4]

While-programs Structured control and procedures Unstructured control

Other control flow constructs

We’ve taken “if” (with both “then” and “else” branches)
and “while” to be primitive

We can define some other operations in terms of these:

if e then s ⇐⇒ if e then s else skip

do s while e ⇐⇒ s; while e do s

for (i ∈ n . . .m) do s ⇐⇒ i := n;

while i ≤ m do {
s; i = i + 1

}

as seen in C, Java, etc.

While-programs Structured control and procedures Unstructured control

Procedures

LWhile is not a realistic language.
Among other things, it lacks procedures
Example (C/Java):

int fact(int n) {

int x = 1;

while(n > 0) {

x = x*n;

n = n-1;

}

return x;

}

Procedures can be added to LWhile (much like functions in
LRec)
Rather than do this, we’ll show how to combine LWhile

with LRec later.

While-programs Structured control and procedures Unstructured control

Structured vs. unstructured programming

[Non-examinable]

All of the languages we’ve seen so far are structured

meaning, control flow is managed using if, while,
procedures, functions, etc.

However, low-level machine code doesn’t have any of
these.

A machine-code program is just a sequence of
instructions in memory

The only control flow is branching:

“unconditionally go to instruction at address n”
“if some condition holds, go to instruction at address n”

Similarly, “goto” statements were the main form of
control flow in many early languages

While-programs Structured control and procedures Unstructured control

“GO TO” Considered Harmful [Non-examinable]

In a famous letter (CACM 1968), Dijkstra listed many
disadvantages of “goto” and related constructs

It allows you to write “spaghetti code”, where control
flow is very difficult to decipher

For efficiency/historical reasons, many languages include
such “unstructured” features:

“goto” — jump to a specific program location
“switch” statements
“break” and “continue” in loops

It’s important to know about these features, their pitfalls
and their safe uses.

While-programs Structured control and procedures Unstructured control

goto in C [Non-examinable]

The C (and C++) language includes goto

In C, goto L jumps to the statement labeled L

A typical (relatively sane) use of goto

... do some stuff ...

if (error) goto error;

... do some more stuff ...

if (error2) goto error;

... do some more stuff...

error: .. handle the error...

We’ll see other, better-structured ways to do this using
exceptions.

While-programs Structured control and procedures Unstructured control

goto in C: pitfalls [Non-examinable]

The scope of the goto L statement and the target L
might be different

for that matter, they might not even be in the same
procedure!

For example, what does this do:

goto L;

if(1) {

int k = fact(3);

L: printf("%d",k);

}

Answer: k will be some random value!

While-programs Structured control and procedures Unstructured control

goto: caveats [Non-examinable]

goto can be used safely in C, but is best avoided unless
you have a really good reason

e.g. very high performance/systems code

Safe use: within same procedure/scope

Or: to jump “out” of a nested loop

While-programs Structured control and procedures Unstructured control

goto fail [Non-examinable]

What’s wrong with this picture?

if (error test 1)

goto fail;

if (error test 2)

goto fail;

goto fail;

if (error test 3)

goto fail;

...

fail: ... handle error ...

(In C, braces on if are optional; if they’re left out, only
the first goto fail statement is conditional!)

This led to an Apple SSL security vulnerability in 2014
(see https://gotofail.com/)

While-programs Structured control and procedures Unstructured control

switch statements [Non-examinable]

We’ve seen case or match constructs in Scala

The switch statement in C, Java, etc. is similar:

switch (month) {

case 1: print("January"); break;

case 2: print("February"); break;

...

default: print("unknown month"); break;

}

However, typically the argument must be a base type like
int

(but see Java 21’s new pattern matching for switch
extension https://openjdk.org/jeps/441)

While-programs Structured control and procedures Unstructured control

switch statements: gotchas [Non-examinable]

See the break; statement?

It’s an important part of the control flow!

it says “now jump out the end of the switch statement”

month = 1;

switch (month) {

case 1: print("January");

case 2: print("February");

...

default: print("unknown month");

} // prints all months!

Can you think of a good reason why you would want to
leave out the break?

While-programs Structured control and procedures Unstructured control

Break and continue [Non-examinable]

The break and continue statements are also allowed in
loops in C/Java family languages.

for(i = 0; i < 10; i++) {

if (i % 2 == 0) continue;

if (i == 7) break;

print(i);

}

“Continue” says Skip the rest of this iteration of the loop.

“Break” says Jump to the next statement after this loop

This will print 135 and then exit the loop.

While-programs Structured control and procedures Unstructured control

Break and continue [Non-examinable]

The break and continue statements are also allowed in
loops in C/Java family languages.

for(i = 0; i < 10; i++) {

if (i % 2 == 0) continue;

if (i == 7) break;

print(i);

}

“Continue” says Skip the rest of this iteration of the loop.

“Break” says Jump to the next statement after this loop

This will print 135 and then exit the loop.

While-programs Structured control and procedures Unstructured control

Labeled break and continue [Non-examinable]

In Java, break and continue can use labels.

OUTER: for(i = 0; i < 10; i++) {

INNER: for(j = 0; j < 10; j++) {

if (j > i) continue INNER;

if (i == 4) break OUTER;

print(j);

}

}

This will print 0010120123 and then exit the loop.

(Labeled) break and continue accommodate some of the
safe uses of goto without as many sharp edges

While-programs Structured control and procedures Unstructured control

Labeled break and continue [Non-examinable]

In Java, break and continue can use labels.

OUTER: for(i = 0; i < 10; i++) {

INNER: for(j = 0; j < 10; j++) {

if (j > i) continue INNER;

if (i == 4) break OUTER;

print(j);

}

}

This will print 0010120123 and then exit the loop.

(Labeled) break and continue accommodate some of the
safe uses of goto without as many sharp edges

While-programs Structured control and procedures Unstructured control

Summary

Many real-world programming languages have:
1 mutable state
2 structured control flow (if/then, while, exceptions)
3 procedures

We’ve showed how to model and interpret LWhile, a simple
imperative language

and discussed a variety of (unstructured) control flow
structures, such as “goto”, “switch” and
“break/continue”.

Next time:

Small-step semantics and type soundness

	While-programs
	Structured control and procedures
	Unstructured control

