Small-step semantics Judgments, Rules, and Induction Type soundness
00000000 00000 000000000

Elements of Programming Languages

Lecture 13: Small-step semantics and type safety

James Cheney
University of Edinburgh

November 7, 2024

Small-step semantics Judgments, Rules, and Induction Type soundness
00000000 00000 000000000

Overview

@ For the remaining lectures we consider some cross-cutting
considerations for programming language design.

e Last time: Imperative programming
e Today:

o Finer-grained (small-step) evaluation
o Type safety

Small-step semantics Judgments, Rules, and Induction
©0000000 00000

Refresher

@ In the first 6 lectures we covered:
Basic arithmetic (Layith)
Conditionals and booleans (L)
Variables and let-binding (Let)
Functions and recursion (Lgec)
Data structures (Lpata)

e formalized using big-step evaluation (e || v) and type
judgments (I~ e : 1)

@ and implemented using Scala interpreters

Type soundness
000000000

Small-step semantics Judgments, Rules, and Induction Type soundness
0@000000 00000 000000000

Limitations of big-step semantics

@ Big-step semantics is convenient, but also limited
@ It says how to evaluate the “whole program” (expression)
to its “final value”
@ But what if there is no final value?
o Expressions like 1 + true simply don’t evaluate
e Nonterminating programs don't evaluate either, but for
a different reason!
@ As we will see in later lectures, it is also difficult to deal

with other features, like exceptions, using big-step
semantics

Small-step semantics Judgments, Rules, and Induction Type soundness
00@00000 00000 000000000

Small-step semantics

@ We will now consider an alternative: small-step semantics
/
e—e

@ which says how to evaluate an expression “one step at a
time"

o If e+ -+ e, then we write gy —* e,. (in particular,
for n =0 we have e —* &)

e We want it to be the case that e —* v if and only if
el v.

@ But — provides more detail about how this happens.

@ It also allows expressions to “go wrong” (get stuck before
reaching a value)

Small-step semantics Judgments, Rules, and Induction Type soundness
000@0000 00000 000000000

Small-step semantics: Layith

for Lai

e — € e — €

aPe—ede b vide

vi+ wi— vy +n W Vi X Vo = Vi XNy Vo

@ If the first subexpression of & can take a step, apply it

@ If the first subexpression is a value and the second can
take a step, apply it

@ If both sides are values, perform the operation

e Example:
1+(2%x3)—1+6—7

Small-step semantics Judgments, Rules, and Induction Type soundness
0000e000 00000 000000000

Small-step semantics: L

for Ly
Vi # Vo

Vv == v —> true vi == v, — false

e— ¢
if e then e; else e, > if €’ then ¢ else e,

if true then ¢ else & — ¢

if false then ¢ else e +— &

@ If the conditional test is not a value, evaluate it one step
@ Otherwise, evaluate the corresponding branch

if 1 ==2 then 3 else4 +— if false then 3 else 4
— 4

Small-step semantics Judgments, Rules, and Induction Type soundness
00000800 00000 000000000

Small-step semantics: Lj¢t

for Lic

e — €
let x =€ in e > let x = €] in e

let x = v; in & — e[vi/x]

@ If the expression e; is not yet a value, evaluate it one step
@ Otherwise, substitute it and proceed

e Example:

let x=1+1inxXxx +— letx=21in x X x
= 2 X2
= 4

Small-step semantics Judgments, Rules, and Induction Type soundness
00000080 00000 000000000

Small-step semantics: L ym

for Liam

e — € e — €

e1e2|—>e{ez V1€2P—>V16’é

(Ax. e) v e[v/x]

@ If the function part is not a value, evaluate it one step

@ If the function is a value and the argument isn't, evaluate
it one step

@ If both function and argument are values, substitute and
proceed

(AxAyx+y)1)2 — (Ay.l+y)?2
= 1+2+—3

Small-step semantics Judgments, Rules, and Induction Type soundness
0000000e 00000 000000000

Small-step semantics: Lgec

e &) for Lrec

(rec f(x). e) v — e[rec f(x).e/f,v/xX]

@ Same rules for evaluation inside application
@ Note that we need to substitute rec f(x).e for f.
@ Suppose fact is the factorial function:

if 2 ==0 then 1 else 2 x fact(2 — 1)

if false then 1 else 2 x fact(2 — 1)

2 x fact(2 — 1) — 2 x fact(1)

2 x (if 1 ==0 then 1 else 1 X fact(1 — 1))
2 x (if false then 1 else 1 x fact(1l — 1))
2 x (1 x fact(1 —1)) — 2 x (1 x fact(0))
2x(I1x1)—»2x1—2

fact 2

1111111

Small-step semantics Judgments, Rules, and Induction Type soundness
00000000 90000 000000000

Judgments and Rules, in general

@ A judgment is a relation among one or more abstract
syntax trees.

@ Examplessofar: el v,TFe:7, e €

@ We have been defining judgments using rules of the form:

B P, --- P,
Q Q

@ where Py,..., P, and Q are judgments.

Small-step semantics Judgments, Rules, and Induction Type soundness
00000000 0000 000000000

Meaning of Rules

@ A rule of the form:

Q

is called an axiom. It says that Q is always derivable.

@ A rule of the form

P, ... P,
Q

says that judgment Q is derivable if Py,..., P, are
derivable.

@ Symbols like e, v, 7 in rules stand for arbitrary
expressions, values, or types.

o (Similar rules are a general basis for programming in
Logic Programming languages like Prolog)

Small-step semantics Judgments, Rules, and Induction Type soundness
00000000 00800 000000000

Rule induction

Induction on derivations of e |} v

Suppose P(—, —) is a predicate over pairs of expressions and
values. If:

@ P(v,v) holds for all values v
e If P(er,v1) and P(e, v») then P(e; + e, vi +n v2)
@ If P(ey,v1) and P(ex, v») then P(e; X e, vi Xy)

then e |} v implies P(e, v).

@ Rule induction can be derived from mathematical
induction on the size (or height) of the derivation tree.

@ (Much like structural induction.)

@ We won't formally prove this.

Judgments, Rules, and Induction Type soundness

Small-step semantics
000000000

00000000 00000

Example: e || v implies e —* v

@ As an example, we'll show a few cases of the forward
direction of:

Theorem (Equivalence of big-step and small-step evaluation)

el v ifand only if e —* v.

Base case.
If the derivation is of the form

ni n

for some number n, then e = n is already a value v = n, so no
steps are needed to evaluate it, i.e. n+—* nin zero steps. [
Y

Small-step semantics Judgments, Rules, and Induction Type soundness
00000000 0000e 000000000

Example: e || v implies e —* v

Inductive case.

If the derivation is of the form

eeldlvi elw
ee+ellvityw

then by induction, we know e; —* v; and e —* v,. Using the
small-step rules, we can then show

eet+teo—"vite—="v+wn— vty

@ The case for X is similar.

Small-step semantics
00000000

Judgments, Rules, and Induction
00000

Type soundness

Type soundness

@ The central property of a type system is soundness.

@ Roughly speaking, soundness means “well-typed programs
don’t go wrong” [Milner].
e But what exactly does “go wrong” mean?
e For large-step: hard to say
e For small-step: “go wrong" means “stuck” expression e
that is not a value and cannot take a step.
@ We could show something like:

Theorem (Value Soundness)

If-e:7ande—*v thent v : T.

@ This says that if an expression evaluates to a value, then
the value has the right type.

Small-step semantics Judgments, Rules, and Induction Type soundness
00000000 00000 0@0000000

Type soundness revisited

@ We can decompose soundness into two parts:

Lemma (Progress)

If = e : 7 then e is not stuck: that is, either e is a value or for
some €' we have e — €.

Lemma (Preservation)

Ife:7ande— € thent-¢€ : 7

@ Combining these two, can show:

Theorem (Soundness)

If= e : 7 then e is not stuck and if e —* € then €' : 7.

@ We will sketch these properties for Lis (leaving out a lot
of formal detail)

Small-step semantics Judgments, Rules, and Induction Type soundness
00000000 00000 00e000000

Progress for L

Progress is proved by induction on - e : 7 derivations. We
show some representative cases.

Progress for +.

Fe :int F e :int
Fe +e:int

If the derivation is of the above form, then by induction e; is
either a value or can take a step, and likewise for e;,. There are
three cases.
o If e — €] then e; + & — €] + es.
o If e is a value v; and e, — €}, then vi + e — vy + €).
@ If both e; and e, are values then they must both be
numbers ny, n, € N, so e; + e — ny +y no.

Small-step semantics Judgments, Rules, and Induction Type soundness
00000000 00000 000800000

Progress for L

Progress for if.

If the derivation is of the form

Fe:bool Fe:7 Fe:T
Fif e then e else & : T

then by induction, either e is a value or can take a step. There
are two cases:

o If e — € then
if e then e; else e, > if €’ then ¢ else e,.

o If e is a value, it must be either true or false. In the
first case, if true then e else e, — €1, otherwise
if false then e else & — 6.

Small-step semantics Judgments, Rules, and Induction Type soundness
00000000 00000 0000@0000

Preservation for L

Preservation is proved by induction on the structure of e : 7.
We'll consider some representative cases:

Preservation for +.

Fe :int F e :int
Fe +e:int

If the derivation is of the above form, there are three cases.
o If ¢ = v; and v; + v» — v; +y V2 then obviously
Fvi+n v @ int.
o If e, + & — €] + e, where e; — €], then since - ¢ : int,
we have |-] : int, so - €] + e, : int also.
@ The case where e; = vy and v; + & — vi + €} is similar.
L]

Small-step semantics Judgments, Rules, and Induction Type soundness
00000000 00000 000008000

Preservation for L

Preservation for if.

If the derivation is of the form

Fe:bool Fe:7 Fe:T
if e then e else & : T

then there are three cases:

@ If if e then e; else e > if € then ¢ else e, where
e — €, then by induction we can show that - ¢’ : bool
and - if €’ then e else &, : 7.

@ If e = true then if true then e; else e — €, SO we
already know - e; : 7.

@ The case for if false then e; else e — & is similar.

L]

Small-step semantics Judgments, Rules, and Induction Type soundness
00000000 00000 000000e00

Type soundness for L ¢ [non-examinable]

@ Progress: straightforward (a “let” can always take a step)

@ Preservation: Suppose we have

Fw:7 x7kFe:T
Fletx=wvine: 7 let x = v; in & — ev1/x]

We need to show that - e;[vy/x] : 7

@ For this we need a substitution lemma

Lemma (Substitution)
IfT,xt'-e:7andT +ée 7' thenT Fe[e'/x]: T

Small-step semantics Judgments, Rules, and Induction Type soundness
00000000 00000 000000080

Type soundness for Lrec [non-examinable]

@ Progress: If an application term is well-formed:

"6117‘1—)7’2 "6217‘1
Fe e:m

then by induction, e, is either a value or e; — €] for some
ef. If it is a value, it must be either a lambda-expression
or a recursive function, so e; e, can take a step.
Otherwise, e; e; — €] €.

@ Preservation: Similar to let, using substitution lemma
for the cases

(M. e) v — el[v/X]
(rec f(x). e) v — e[rec f(x). e/f,v/x]

Small-step semantics Judgments, Rules, and Induction Type soundness
00000000 00000 00000000e

Summary

@ Today we have presented

Small-step evaluation: a finer-grained semantics
Induction on derivations

Type soundness (details for L)

Sketch of type soundness for Lrec [Non-examinable]

@ Deep breath: No more induction proofs from now on.

@ Remaining lectures cover cross-cutting language features,
which often have subtle interactions with each other
o Next time: Imperative programming revisited:
references, arrays and other resources.

	Small-step semantics
	Judgments, Rules, and Induction
	Type soundness

