
References Semantics of references Resources

Elements of Programming Languages
Lecture 14: References, Arrays, and Resources

James Cheney

University of Edinburgh

November 11, 2024



References Semantics of references Resources

Overview

Over the final few lectures we are exploring cross-cutting
design issues

Today we consider a way to incorporate mutable
variables/assignment into a functional setting:

References
Interaction with subtyping and polymorphism
Resources, more generally



References Semantics of references Resources

References

In LWhile, all variables are mutable and global

This makes programming fairly tedious and it’s easy to
make mistakes

There’s also no way to create new variables (short of
coming up with a new variable name)

Can we smoothly add mutable state side-effects to LPoly?

Can we provide imperative features within a
mostly-functional language?



References Semantics of references Resources

References

Consider the following language LRef extending LPoly:

e ::= · · · | ref(e) | !e | e1 := e2 | e1; e2
τ ::= · · · | ref[τ ]

Idea: ref(e) evaluates e to v and creates a new
reference cell containing v

!e evaluates e to a reference and looks up its value

e1 := e2 evaluates e1 to a reference cell and e2 to a value
and assigns the value to the reference cell.

e1; e2 evaluates e1, ignores value, then evaluates e2



References Semantics of references Resources

References: Types

Γ ⊢ e : τ for LRef

Γ ⊢ e : τ
Γ ⊢ ref(e) : ref[τ ]

Γ ⊢ e : ref[τ ]

Γ ⊢ !e : τ

Γ ⊢ e1 : ref[τ ] Γ ⊢ e2 : τ

Γ ⊢ e1 := e2 : unit
Γ ⊢ e1 : τ

′ Γ ⊢ e2 : τ
Γ ⊢ e1; e2 : τ

ref(e) creates a reference of type τ if e : τ

!e gets a value of type τ if e : ref[τ ]

e1 := e2 updates reference e1 : ref[τ ] with value e2 : τ .
Its return value is ().

e1; e2 evaluates e1, ignores the resulting value, and
evaluates e2.



References Semantics of references Resources

References in Scala

Recall that var in Scala makes a variable mutable:

class Ref[A](val x: A) {

private var a = x

def get = a

def set(y: A) = { a = y }

}

scala> val x = new Ref[Int](1)

x: Ref[Int] = Ref@725bef66

scala> x.get

res3: Int = 1

scala> x.set(12)

scala> x.get

res5: Int = 12



References Semantics of references Resources

Interpreting references in Scala using Ref

case class Ref(e: Expr) extends Expr

case class Deref(e: Expr) extends Expr

case class Assign(e: Expr, e2: Expr) extends Expr

case class Cell(l: Ref[Value]) extends Value

def eval(env: Env[Value], e: Expr) = e match { ...

case Ref(e) => Cell(new Ref(eval(env,e)))

case Deref(e) => eval(env,e) match {

case Cell(r) => r.get

}

case Assign(e1,e2) => eval(env,e1) match {

case Cell(r) => r.set(eval(env,e2))

}

}



References Semantics of references Resources

Imperative Programming and Procedures

Once we add references to a functional language (e.g.
LPoly), we can use function definitions and
lambda-abstraction to define procedures

Basically, a procedure is just a function with return type
unit

val x = new Ref(42)

def incrBy(n: Int): Unit = {

x.set(x.get + n)

}

Such a procedure does not return a value, and is only
executed for its “side effects” on references

Using the same idea, we can embed all of the constructs
of LWhile in LRef (see tutorial)



References Semantics of references Resources

References: Semantics

Small steps σ, e 7→ σ′, e ′, where σ : Loc → Value. “in
initial state σ, expression e can step to e ′ with state σ′.”

What does ref(e) evaluate to? A pointer or memory cell
location, ℓ ∈ Loc

v ::= · · · | ℓ

These special values only appear during evaluation.

σ, e 7→ σ′, e ′ for LRef

ℓ /∈ locs(σ)

σ, ref(v) 7→ σ[ℓ := v ], ℓ

σ, !ℓ 7→ σ, σ(ℓ) σ, ℓ := v 7→ σ[ℓ := v ], ()



References Semantics of references Resources

References: Semantics

We also need to change all of the existing small-step rules
to pass σ through...

σ, e 7→ σ′, e ′

σ, e1 7→ σ′, e ′1
σ, e1 ⊕ e2 7→ σ′, e ′1 ⊕ e2

σ, e2 7→ σ′, e ′2
σ, v1 ⊕ e2 7→ σ′, v1 ⊕ e ′2

σ, v1 + v2 7→ σ, v1 +N v2 σ, v1 × v2 7→ σ, v1 ×N v2

...

Subexpressions may contain references (leading to
allocation or updates), so we need to allow σ to change in
any subexpression evaluation step.



References Semantics of references Resources

References: Semantics

Finally, we need rules that evaluate inside the reference
constructs themselves:

σ, e 7→ σ′, e ′

σ, e 7→ σ′, e ′

σ, ref(e) 7→ σ′, ref(e ′)

σ, e 7→ σ′, e ′

σ, !e 7→ σ′, !e ′

σ, e1 7→ σ′, e ′1
σ, e1 := e2 7→ σ′, e ′1 := e2

σ, e2 7→ σ′, e ′2
σ, v1 := e2 7→ σ′, v1 := e ′2

Notice again that we need to allow for updates to σ.

For example, to evaluate ref(ref(42))



References Semantics of references Resources

References: Examples

Simple example

let r = ref(42) in r := 17; !r

7→ [ℓ := 42], let r = ℓ in r := 17; !r

7→ [ℓ := 42], ℓ := 17; !ℓ

7→ [ℓ := 17], !ℓ 7→ [ℓ := 17], 17

Aliasing/copying

let r = ref(42) in (λx .λy .x := !y + 1) r r

7→ [ℓ = 42], let r = ℓ in (λx .λy .x := !y + 1) r r

7→ [ℓ = 42], (λx .λy .x := !y + 1) ℓ ℓ

7→ [ℓ = 42], (λy .ℓ := !y + 1) ℓ

7→ [ℓ = 42], ℓ := !ℓ+ 1 7→ [ℓ = 42], ℓ := 42 + 1

7→ [ℓ = 42], ℓ := 43 7→ [ℓ = 43], ()



References Semantics of references Resources

References: Examples

Simple example

let r = ref(42) in r := 17; !r

7→ [ℓ := 42], let r = ℓ in r := 17; !r

7→ [ℓ := 42], ℓ := 17; !ℓ

7→ [ℓ := 17], !ℓ 7→ [ℓ := 17], 17

Aliasing/copying

let r = ref(42) in (λx .λy .x := !y + 1) r r

7→ [ℓ = 42], let r = ℓ in (λx .λy .x := !y + 1) r r

7→ [ℓ = 42], (λx .λy .x := !y + 1) ℓ ℓ

7→ [ℓ = 42], (λy .ℓ := !y + 1) ℓ

7→ [ℓ = 42], ℓ := !ℓ+ 1 7→ [ℓ = 42], ℓ := 42 + 1

7→ [ℓ = 42], ℓ := 43 7→ [ℓ = 43], ()



References Semantics of references Resources

Something’s missing

We didn’t give a rule for e1; e2. It’s pretty straightforward
(exercise!)

actually, e1; e2 is definable as

e1; e2 ⇐⇒ let = e1 in e2

where stands for any variable not already in use in e1, e2.

Why?

To evaluate e1; e2, we evaluate e1 for its side effects,
ignore the result, and then evaluate e2 for its value (plus
any side effects)
Evaluating let = e1 in e2 first evaluates e1, then
binds the resulting value to some variable not used in e2,
and finally evaluates e2.



References Semantics of references Resources

Reference semantics: observations

Notice that any subexpression can create, read or assign a
reference:

let r = ref(1) in (r := 1000; 3) + !r

This means that evaluation order really matters!

Do we get 4 or 1003 from the above?

With left-to-right order, r := 1000 is evaluated first,
then !r , so we get 1003
If we evaluated right-to-left, then !r would evaluate to 1,
before assigning r := 1000, so we would get 4

However, the small-step rules clarify that existing
constructs evaluate “as usual”, with no side-effects.



References Semantics of references Resources

Arrays

Arrays generalize references to allow getting and setting
by index (i.e. a reference is a one-element array)

e ::= · · · | array(e1, e2) | e1[e2] | e1[e2] := e3

τ ::= · · · | array[τ ]

array(n, init) creates an array of n elements, initialized
to init

arr [i ] gets the ith element; arr [i ] := v sets the ith
element to v

This introduces the potential problem of out-of-bounds
accesses

Typing, evaluation rules for arrays: exercise



References Semantics of references Resources

References and subtyping

Consider Integer <: Object, String <: Object

Suppose we allowed contravariant subtyping for Ref, i.e.
Ref[-A]

which is obviously silly: we shouldn’t expect a reference
to Object to be castable to String.

We could then do the following:

val x: Ref[Object] = new Ref(new Integer(42))

// String <: Object,

// hence Ref[Object] <: Ref[String]

x.get.length() // unsound! x: Ref[Int]



References Semantics of references Resources

References and subtyping

Consider Int <: Object, String <: Object

Suppose we allowed covariant subtyping for Ref, i.e.
Ref[+A]

We could then do the following:

val x: Ref[String] = new Ref(new String("asdf"))

def bad(y: Ref[Object]) = y.set(new Integer(42))

bad(x) // x still has type Ref[String]!

x.get.length() // unsound!

Therefore, mutable parameterized types like Ref must be
invariant (neither covariant nor contravariant)

(Java got this wrong, for built-in array types!)



References Semantics of references Resources

References and polymorphism [non-examinable]

A related problem: references can violate type soundness
in a language with Hindley-Milner style type inference and
let-bound polymorphism (e.g. ML, OCaml, F#)

let r = ref (fn x => x) in

r := (fn x => x + 1);

!r(true)

r initially gets inferred type ∀A.A → A

We then assign r to be a function of type int → int

and then apply r to a boolean!

Accepted solution: the value restriction - the right-hand
side of a polymorphic let must be a value.

(e.g., in Scala, polymorphism is only introduced via
function definitions)



References Semantics of references Resources

Resources

References, arrays illustrate a common resource pattern:

Memory cells (references, arrays, etc.)
Files/file handles
Database, network connections
Locks

Usage pattern: allocate/open/acquire, use,
deallocate/close/release

Key issues:

How to ensure proper use? (e.g. all array accesses are
in-bounds)
How to ensure eventual deallocation?
How to avoid attempted use after deallocation?



References Semantics of references Resources

Design choices regarding references and pointers

Some languages (notably C/C++) distinguish between
type τ and type τ∗ (“pointer to τ”), i.e. a mutable
reference

Other languages, notably Java, consider many types (e.g.
classes) to be “reference types”, i.e., all variables of that
type are really mutable (and nullable!) references.

In Scala, variables introduced by val are immutable, while
using var they can be assigned.

In Haskell, as a pure, functional language, all variables are
immutable; references and mutable state are available but
must be handled specially



References Semantics of references Resources

Safe allocation and use of resources

In a strongly typed language, we can ensure safe resource
use by ensuring all expressions of type ref[τ ] are properly
initialized

C/C++ does not do this: a pointer τ∗ may be
“uninitialized” (not point to an allocated τ block). Must
be initialized separately via malloc or other operations.

Java, Scala (sort of) does this: an expression of reference
type τ is a reference to an allocated τ (or null!)

Haskell doesn’t allow “silent” null values, and so a τ is
always an allocated structure. See also “Explicit Nulls”
Scala option

Moreover, a ref[τ ] is always a reference to an allocated,
mutable τ



References Semantics of references Resources

Safe deallocation of resources?

Unfortunately, types are not as helpful in enforcing safe
deallocation.

One problem: forgetting to deallocate (resource leaks).
Leads to poor performance or run-time failure if resources
exhausted.

Another problem: deallocating the same resource more
than once (double free), or trying to use it after it’s been
deallocated

A major reason is aliasing: copies of references to
allocated resources can propagate to unpredictable parts
of the program

Advanced uses of types (see for example Rust) can help
with this, but remains an active research topic...



References Semantics of references Resources

Main approaches to deallocation

C/C++: explicit deallocation (free) must be done by
the programmer.

(This is very hard to get right, and causes many bugs.)

Java, Scala, Haskell use garbage collection. It is the
runtime’s job to decide when it is safe to deallocate
resources.

This makes life much easier for the programmer, but
requires a much more sophisticated implementation, and
complicates optimization/performance tuning

Lexical scoping or exception handling works well for
ensuring deallocation in certain common cases (e.g. files,
locks, connections)

Other approaches include reference counting, regions, etc.



References Semantics of references Resources

Summary

We continued to explore design considerations that affect
many aspects of a language

Today:

references and mutability, in general
interaction with subtyping
and polymorphism [non-examinable]
some observations about other forms of resources and
the “allocate/use/deallocate” pattern


	References
	Semantics of references
	Resources

