References Semantics of references Resources
000000 0000000000 000000

Elements of Programming Languages

Lecture 14: References, Arrays, and Resources

James Cheney
University of Edinburgh

November 11, 2024

References Semantics of references Resources
000000 0000000000 000000

Overview

@ Over the final few lectures we are exploring cross-cutting
design issues
@ Today we consider a way to incorporate mutable
variables/assignment into a functional setting:
o References
e Interaction with subtyping and polymorphism
e Resources, more generally

References Semantics of references Resources
900000 0000000000 000000

References

@ In Lwhie, all variables are mutable and global

@ This makes programming fairly tedious and it's easy to
make mistakes

@ There's also no way to create new variables (short of
coming up with a new variable name)

@ Can we smoothly add mutable state side-effects to Lpoy,?

@ Can we provide imperative features within a
mostly-functional language?

References Semantics of references Resources
0e0000 0000000000 000000

References

@ Consider the following language Lges extending Lpgy:

e = ---|ref(e)|le| e =e|e;e

T = | ref[r]

@ Idea: ref(e) evaluates e to v and creates a new
reference cell containing v

@ !e evaluates e to a reference and looks up its value

@ ¢; := & evaluates e; to a reference cell and e, to a value
and assigns the value to the reference cell.

@ e, & evaluates e, ignores value, then evaluates e,

References Semantics of references Resources
00e000 0000000000 000000

References: Types

for Lrer

Mle:r [e:ref[r]
[t ref(e) : ref[r] MEle:r
[He :ref[r] The:T Tte:7 The: 7T
[Fe ;=6 :unit [Fee:T

@ ref(e) creates a reference of type 7 if e : 7
@ le gets a value of type 7 if e : ref[7]

@ e := e updates reference e : ref[r]| with value e; : 7.
Its return value is ().

@ e1; e evaluates ey, ignores the resulting value, and
evaluates 6.

References Semantics of references Resources
000e00 0000000000 000000

References in Scala

Recall that var in Scala makes a variable mutable:

class Ref[A]l(val x: A) {
private var a = x
def get = a
def set(y: A) ={a=y 1}
}
scala> val x = new Ref[Int] (1)
x: Ref[Int] = Ref@725bef66
scala> x.get
res3: Int =1
scala> x.set(12)
scala> x.get
resb: Int = 12

References
000080

Semantics of references
0000000000

Interpreting references in Scala using Ref

Resources
000000

case
case
case
case

def eval(env: Env[Value], e: Expr) = e match { ...

class
class
class
class

Ref (e: Expr) extends Expr

Deref (e: Expr) extends Expr

Assign(e: Expr, e2: Expr) extends Expr
Cell(l: Ref[Valuel]) extends Value

case Ref (e) => Cell(new Ref(eval(env,e)))
case Deref (e) => eval(env,e) match {
case Cell(r) => r.get

}

case Assign(el,e2) => eval(env,el) match {
case Cell(r) => r.set(eval(env,e2))

}
}

References Semantics of references Resources
00000e 0000000000 000000

Imperative Programming and Procedures

@ Once we add references to a functional language (e.g.
Lpoly), We can use function definitions and
lambda-abstraction to define procedures

@ Basically, a procedure is just a function with return type
unit

val x = new Ref (42)
def incrBy(n: Int): Unit = {
x.set(x.get + n)

}

@ Such a procedure does not return a value, and is only
executed for its “side effects” on references

@ Using the same idea, we can embed all of the constructs
of Lwhile in Lrer (see tutorial)

References Semantics of references Resources
000000 000000000 000000

References: Semantics

@ Small steps o0, e — o', €, where o : Loc — Value. "in
initial state o, expression e can step to €’ with state ¢’.”
@ What does ref(e) evaluate to? A pointer or memory cell

location, ¢ € Loc

@ These special values only appear during evaluation.

o,er— o', e |for Lres

o,ref(v) — o[l :=v], L

0 ¢ locs(o)

o, W o,0(0) o, l:=v ol :=v]()

References Semantics of references Resources
000000 0®00000000 000000

References: Semantics

@ We also need to change all of the existing small-step rules
to pass o through...

o,e— o, e

o,e1— 0 € 0,6 +— 0 €
g,e1De— o el D e o,vide— o v d e

o,V1 + Vo = 0,V] +N Vo o,Vi1 X \p = 0,V] XN W

@ Subexpressions may contain references (leading to
allocation or updates), so we need to allow o to change in
any subexpression evaluation step.

References Semantics of references Resources
000000 00®0000000 000000

References: Semantics

e Finally, we need rules that evaluate inside the reference
constructs themselves:

o,e— o€ o,e— o€
o,ref(e) — o', ref(e’) o,le — o' le
o,e — 0 e 0,6+ 0 €
g6 =€ 0,6 = ovyi=e— o, v i=¢

@ Notice again that we need to allow for updates to o.

@ For example, to evaluate ref(ref(42))

References Semantics of references Resources
000000 0000000000 000000

References: Examples

@ Simple example
let r = ref(42) in r :=17;!r
— [(:=42],1et r={in r:=17;!r
= [0:=42],0:=17; 14
= [=17,W — [0 :=17],17

References Semantics of references Resources
000000 0000000000 000000

References: Examples

@ Simple example
let r = ref(42) in r :=17;!r

— [(:=42],1et r={in r:=17;!r

= [0:=42],0:=17; 14

= [=17,W — [0 :=17],17
e Aliasing/copying
let r=ref(42) in (AxA\y.x:=ly+1)rr
[=42],1et r=/in (AxAyx:=ly+1)rr
[0 =42],(Mx Ay x:=ly+1)0¢
[0 =42],(\y.l =1y +1)¢
[0 =42],0 =W +1— [(=42],0:=42+1
[(= 42],0 =43 — [¢ = 43],()

11111

References Semantics of references Resources
000000 0000@00000 000000

Something’s missing

@ We didn’t give a rule for e;; e,. It's pretty straightforward
(exercise!)

@ actually, e;; e is definable as
€1;,6 < let _=¢€ in &

where _ stands for any variable not already in use in e, e.
o Why?

o To evaluate e;1; e, we evaluate e; for its side effects,
ignore the result, and then evaluate e, for its value (plus
any side effects)

e Evaluating let _ = e; in e first evaluates e, then

binds the resulting value to some variable not used in e,
and finally evaluates e;.

References Semantics of references Resources
000000 0000080000 000000

Reference semantics: observations

@ Notice that any subexpression can create, read or assign a
reference:

let r = ref(1) in (r := 1000;3) + !r

@ This means that evaluation order really matters!
@ Do we get 4 or 1003 from the above?

o With left-to-right order, r := 1000 is evaluated first,
then !r, so we get 1003

o If we evaluated right-to-left, then !r would evaluate to 1,
before assigning r := 1000, so we would get 4

@ However, the small-step rules clarify that existing
constructs evaluate “as usual”’, with no side-effects.

References
000000

Arrays

"

Semantics of references
0000008000

Arrays generalize references to allow getting and setting
by index (i.e. a reference is a one-element array)

e = ---|array(e,) | efe] | ere] := €3

T = ---|array|7]

array(n, init) creates an array of n elements, initialized
to init

arr[i] gets the ith element; arr[i] := v sets the ith
element to v

This introduces the potential problem of out-of-bounds
accesses

Typing, evaluation rules for arrays: exercise

Resources
000000

References Semantics of references Resources
000000 0000000800 000000

References and subtyping

@ Consider Integer <: Object, String <: Object

@ Suppose we allowed contravariant subtyping for Ref, i.e.
Ref [-A]

@ which is obviously silly: we shouldn’t expect a reference
to Object to be castable to String.

@ We could then do the following:

val x: Ref[0Object] = new Ref(new Integer(42))
// String <: Object,

// hence Ref[Object] <: Ref[String]
x.get.length() // unsound! x: Ref[Int]

References Semantics of references Resources
000000 0000000000 000000

References and subtyping

(]

Consider Int <: Object, String <: Object

Suppose we allowed covariant subtyping for Ref, i.e.
Ref [+A]

@ We could then do the following:

val x: Ref[String] = new Ref(new String("asdf"))
def bad(y: Ref[0Object]) = y.set(new Integer(42))
bad(x) // = still has type Ref[String]!
x.get.length() // unsound!

@ Therefore, mutable parameterized types like Ref must be
invariant (neither covariant nor contravariant)

(Java got this wrong, for built-in array types!)

References
000000

Semantics of references Resources
000000000e 000000

References and polymorphism [non-examinable]

A related problem: references can violate type soundness
in a language with Hindley-Milner style type inference and
let-bound polymorphism (e.g. ML, OCaml, F#)

let r = ref (fn x => x) in
r := (fn x => x + 1);
Ir(true)

r initially gets inferred type VA.A — A
We then assign r to be a function of type int — int
and then apply r to a boolean!

Accepted solution: the value restriction - the right-hand
side of a polymorphic 1let must be a value.

(e.g., in Scala, polymorphism is only introduced via
function definitions)

References Semantics of references Resources
000000 0000000000 900000

Resources

@ References, arrays illustrate a common resource pattern:

o Memory cells (references, arrays, etc.)
o Files/file handles

e Database, network connections
o Locks

@ Usage pattern: allocate/open/acquire, use,
deallocate/close/release

o Key issues:
e How to ensure proper use? (e.g. all array accesses are
in-bounds)
e How to ensure eventual deallocation?
e How to avoid attempted use after deallocation?

References Semantics of references Resources
000000 0000000000 0e0000

Design choices regarding references and pointers

@ Some languages (notably C/C++) distinguish between
type 7 and type 7 (“pointer to 7"), i.e. a mutable
reference

@ Other languages, notably Java, consider many types (e.g.
classes) to be “reference types”, i.e., all variables of that
type are really mutable (and nullable!) references.

@ In Scala, variables introduced by val are immutable, while
using var they can be assigned.

@ In Haskell, as a pure, functional language, all variables are
immutable; references and mutable state are available but
must be handled specially

References Semantics of references Resources
000000 0000000000 00e000

Safe allocation and use of resources

@ In a strongly typed language, we can ensure safe resource
use by ensuring all expressions of type ref[r] are properly
initialized

e C/C++ does not do this: a pointer 7+ may be
“uninitialized” (not point to an allocated 7 block). Must
be initialized separately via malloc or other operations.

@ Java, Scala (sort of) does this: an expression of reference
type 7 is a reference to an allocated 7 (or null!)
@ Haskell doesn't allow “silent” null values, and so a 7 is

always an allocated structure. See also “Explicit Nulls”
Scala option

@ Moreover, a ref[7] is always a reference to an allocated,
mutable 7

References Semantics of references Resources
000000 0000000000 000e00

Safe deallocation of resources?

@ Unfortunately, types are not as helpful in enforcing safe
deallocation.

@ One problem: forgetting to deallocate (resource leaks).
Leads to poor performance or run-time failure if resources
exhausted.

@ Another problem: deallocating the same resource more
than once (double free), or trying to use it after it's been
deallocated

@ A major reason is aliasing: copies of references to
allocated resources can propagate to unpredictable parts
of the program

@ Advanced uses of types (see for example Rust) can help
with this, but remains an active research topic...

References Semantics of references Resources
000000 0000000000 000080

Main approaches to deallocation

@ C/C++: explicit deallocation (free) must be done by
the programmer.

o (This is very hard to get right, and causes many bugs.)

@ Java, Scala, Haskell use garbage collection. It is the
runtime’s job to decide when it is safe to deallocate
resources.

e This makes life much easier for the programmer, but
requires a much more sophisticated implementation, and
complicates optimization/performance tuning

@ Lexical scoping or exception handling works well for
ensuring deallocation in certain common cases (e.g. files,
locks, connections)

@ Other approaches include reference counting, regions, etc.

References Semantics of references Resources
000000 0000000000 00000e

Summary

@ We continued to explore design considerations that affect
many aspects of a language

e Today:

references and mutability, in general

interaction with subtyping

and polymorphism [non-examinable]

some observations about other forms of resources and
the “allocate/use/deallocate” pattern

	References
	Semantics of references
	Resources

