
Exceptions Tail recursion Continuations

Elements of Programming Languages
Lecture 16: Exceptions and Control Abstractions

James Cheney

University of Edinburgh

November 18, 2024

Exceptions Tail recursion Continuations

Overview

We have been considering several high-level aspects of
language design:

Type soundness
References
Evaluation order

Today we complete this tour and examine:

Exceptions
Tail recursion
Other control abstractions

Exceptions Tail recursion Continuations

Exceptions

In earlier lectures, we considered several approaches to
error handling

Exceptions are another popular approach (supported by
Java, C++, Scala, ML, Python, etc.)

The throw e statement raises an exception e

A try/catch block runs a statement; if an exception is
raised, control transfers to the corresponding handler

try { ... do something ... }

catch (IOException e)

{... handle exception e ...}

catch (NullPointerException e)

{... handle another exception...}

Exceptions Tail recursion Continuations

finally and resource cleanup

What if the try block allocated some resources?

We should make sure they get deallocated!

finally clause: gets run at the end whether or not
exception is thrown

InputStream in = null;

try { in = new FileInputStream(fname);

... do something with in ... }

catch (IOException exn) {...}

finally { if(in != null)

in.close(); }

Java 7: “try-with-resources” encapsulates this pattern,
for resources implementing AutoCloseable interface

Exceptions Tail recursion Continuations

throws clauses

In Java, potentially unhandled exceptions typically need
to be declared in the types of methods

void writeFile(String filename)

throws IOException {

InputStream in = new FileInputStream(filename);

... write to file ...

in.close();

}

This means programmers using such methods know that
certain exceptions need to be handled

Failure to handle or declare an exception is a type error!

(however, certain unchecked exceptions / errors do not
need to be declared, e.g. NullPointerException)

Exceptions Tail recursion Continuations

Exceptions in Scala

As you might expect, Scala supports a similar mechanism:

try { ... do something ... }

catch {

case exn: IOException =>

... handle IO exception...

case exn: NullPointerException =>

... handle null pointer exception...

} finally { ... cleanup ...}

Main difference: The catch block is just a Scala pattern
match on exceptions

Scala allows pattern matching on types (via
isInstanceOf/asInstanceOf)

Also: throws clauses not required

Exceptions Tail recursion Continuations

Exceptions for shortcutting

We can also use exceptions for “normal” computation

def product(l: List[Int]) = {

object Zero extends Throwable

def go(l: List[Int]): Int = l match {

case Nil => 1

case x::xs =>

if (x == 0) {throw Zero} else {x * go(xs)}

}

try { go(l) }

catch { case Zero => 0 }

}

potentially saving a lot of effort if the list contains 0

Exceptions Tail recursion Continuations

Exceptions in practice

Java:

Exceptions are subclasses of java.lang.Throwable
Method types must declare (most) possible exceptions in
throws clause
compile-time error if an exception can be raised and not
caught or declared
multiple “catch” blocks; “finally” clause to allow cleanup

Scala:

doesn’t require declaring thrown exceptions: this
becomes especially painful in a higher-order language...
“catch” does pattern matching

Exceptions Tail recursion Continuations

Modeling exceptions

We will formalize a simple model of exceptions:

e ::= · · · | raise e | e1 handle {x ⇒ e2}

Here, raise e throws an arbitrary value as an “exception”

while e1 handle {x ⇒ e2} evaluates e1 and, if an
exception is thrown during evaluation, binds the value v
to x and evaluates e2.

Define LExn as LRec extended with exceptions

Exceptions Tail recursion Continuations

Exceptions and types

Exception constructs are straightforward to typecheck:

τ ::= · · · | exn

Usually, the exn type is extensible (e.g. by subclassing)

Γ ⊢ e : τ for LExn

Γ ⊢ e : exn
Γ ⊢ raise e : τ

Γ ⊢ e1 : τ Γ, x : exn ⊢ e2 : τ

Γ ⊢ e1 handle {x ⇒ e2} : τ

Note: raise e can have any type! (because raise e
never returns)

The return types of e1 and e2 in handler must match.

Exceptions Tail recursion Continuations

Interpreting exceptions

We can extend our Scala interpreter for LRec to manage
exceptions as follows:

case class ExceptionV(v: Value) extends Throwable

def eval(e: Expr): Value = e match {

...

case Raise(e: Expr) => throw (ExceptionV(eval(e)))

case Handle(e1: Expr, x: Variable, e2:Expr) =>

try {

eval(e1)

} catch (ExceptionV(v)) {

eval(subst(e2,v,x))

}

This might seem a little circular!

Exceptions Tail recursion Continuations

Semantics of exceptions

To formalize the semantics of exceptions, we need an
auxiliary judgment e raises v

Intuitively: this says that expression e does not finish
normally but instead raises exception value v

e raises v

raise v raises v
e1 raises v

e1 ⊕ e2 raises v
e2 raises v

v1 ⊕ e2 raises v

e raises v
if e then e1 else e2 raises v · · ·

The most interesting rule is the first one; the rest are
“administrative”

Exceptions Tail recursion Continuations

Semantics of exceptions

We can now define the small-step semantics of handle
using the following additional rules:

e 7→ e ′

e1 7→ e ′1
e1 handle {x ⇒ e2} 7→ e ′1 handle {x ⇒ e2}

v1 handle {x ⇒ e2} 7→ v1

e1 raises v

e1 handle {x ⇒ e2} 7→ e2[v/x]

If e1 steps normally to e ′1, take that step

If e1 raises an exception v , substitute it in for x and
evaluate e2

Exceptions Tail recursion Continuations

Tail recursion

A function call is a tail call if it is the last action of the
calling function. If every recursive call is a tail call, we say
f is tail recursive.

For example, this version of fact is not tail recursive:

def fact1(n: Int): Int =

if (n == 0) {1} else {n * (fact1(n-1))}

But this one is:

def fact2(n: Int) = {

def go(n: Int, r: Int): Int =

if (n == 0) {r} else {go(n-1,n*r)}

go(n,1)

}

Exceptions Tail recursion Continuations

Tail recursion and efficiency

Tail recursive functions can be compiled more efficiently

because there is no more “work” to do after the recursive
call

In Scala, there is a (checked) annotation @tailrec to
mark tail-recursive functions for optimization

def fact2(n: Int) = {

@tailrec

def go(n: Int, r: Int): Int =

if (n == 0) {r} else {go(n-1,n*r)}

go(n,1)

}

Exceptions Tail recursion Continuations

Continuations [non-examinable]

Conditionals, while-loops, exceptions, “goto” are all form
of control abstraction

Continuations are a highly general notion of control
abstraction, which can be used to implement exceptions
(and much else).

Material covered from here on is non-examinable.

just for fun!
(Depends on your definition of fun, I suppose)

Exceptions Tail recursion Continuations

Continuations

A continuation is a function representing “the rest of the
computation”

Any function can be put in “continuation-passing form”

for example

def fact3[A](n: Int, k: Int => A): A =

if (n == 0) {k(1)}

else {fact3(n-1, {m => k (n * m)})}

This says: if n is 0, pass 1 to k

otherwise, recursively call with parameters n − 1 and
λr .k(n × r)

“when done, multiply the result by n and pass to k”

Exceptions Tail recursion Continuations

How does this work?

def fact3[A](n: Int, k: Int => A): A =

if (n == 0) {k(1)} else {fact3(n-1, {r => k (n * r)})}

fact3(3, λx .x)

7→ fact3(2, λr1.(λx .x) (3× r1))

7→ fact3(1, λr2.(λr .(λx .x) (3× r)) (2× r2))

7→ fact3(0, λr3.(λr2.(λr1.(λx .x) (3× r1)) (2× r2)) (1× r3))

7→ (λr3.(λr2.(λr1.(λx .x) (3× r1)) (2× r2)) (1× r3)) 1

7→ (λr2.(λr1.(λx .x) (3× r1)) (2× r2)) (1× 1)

7→ (λr1.(λx .x) (3× r1)) (2× 1)

7→ (λx .x) (3× 2)

7→ 6

Exceptions Tail recursion Continuations

Interpreting LArith using continuations

def eval[A](e: Expr, k: Value => A): A = e match {

// Arithmetic

case Num(n) => k(NumV(n))

case Plus(e1,e2) =>

eval(e1,{case NumV(v1) =>

eval(e2,{case NumV(v2) => k(NumV(v1+v2))})})

case Times(e1,e2) =>

eval(e1,{case NumV(v1) =>

eval(e2,{case NumV(v2) => k(NumV(v1*v2))})})

...

}

Exceptions Tail recursion Continuations

Interpreting LIf using continuations

def eval[A](e: Expr, k: Value => A): A = e match {

...

// Booleans

case Bool(n) => k(BoolV(n))

case Eq(e1,e2) =>

eval(e1,{v1 =>

eval(e2,{v2 => k(BoolV(v1 == v2))})})

case IfThenElse(e,e1,e2) =>

eval(e,{case BoolV(v) =>

if(v) { eval(e1,k) } else { eval(e2,k) } })

...

}

Exceptions Tail recursion Continuations

Interpreting LLet using continuations

def eval[A](e: Expr, k: Value => A): A = e match {

...

// Let-binding

case Let(e1,x,e2) =>

eval(e1,{v =>

eval(subst(e2,v,x),k)})

...

}

Exceptions Tail recursion Continuations

Interpreting LRec using continuations

def eval[A](e: Expr, k: Value => A): A = e match {

...

// Functions

case Lambda(x,ty,e) => k(LambdaV(x,ty,e))

case Rec(f,x,ty1,ty2,e) => k(RecV(f,x,ty1,ty2,e))

case Apply(e1,e2) =>

eval(e1, {v1 =>

eval(e2, {v2 => v1 match {

case LambdaV(x,ty,e) => eval(subst(e,v2,x), k)

case RecV(f,x,ty1,ty2,e) =>

eval(subst(subst(e,v2,x),v1,f),k)

}})})

...

}

Exceptions Tail recursion Continuations

Interpreting LExn using continuations

To deal with exceptions, we add a second continuation h for
handling exceptions. (Cases seen so far just pass h along.)

def eval[A](e: Expr, h: Value => A,

k: Value => A): A = e match {

...

// Exceptions

case Raise(e0) => eval(e0,h,h)

case Handle(e1,x,e2) =>

eval(e1,{v => eval(subst(e2,v,x),h,k)},k)

}

When raising an exception, we forget k and pass to h.
When handling, we install new handler using e2

Exceptions Tail recursion Continuations

Summary

Today we completed our tour of

Type soundness
References and resource management
Evaluation order
Exceptions and control abstractions (today)

which can interact with each other and other language
features in subtle ways

Next time:

review lecture
information about exam, reading

	Exceptions
	Tail recursion
	Continuations

