Exceptions Tail recursion Continuations
00000000000 [e]e] 000000000

Elements of Programming Languages

Lecture 16: Exceptions and Control Abstractions

James Cheney
University of Edinburgh

November 18, 2024

Exceptions Tail recursion Continuations
00000000000 [e]e] 000000000

Overview

@ We have been considering several high-level aspects of
language design:
e Type soundness
o References
e Evaluation order

@ Today we complete this tour and examine:

o Exceptions
e Tail recursion
e Other control abstractions

Exceptions Tail recursion Continuations
90000000000 (o]} 000000000

Exceptions

@ In earlier lectures, we considered several approaches to
error handling

@ Exceptions are another popular approach (supported by
Java, C++, Scala, ML, Python, etc.)

@ The throw e statement raises an exception e

@ A try/catch block runs a statement; if an exception is
raised, control transfers to the corresponding handler

try { ... do something ... }
catch (IOException e)
{... handle exception e ...}

catch (NullPointerException e)
{... handle another exception...}

Exceptions Tail recursion Continuations
08000000000 (o]} 000000000

finally and resource cleanup

@ What if the try block allocated some resources?
@ We should make sure they get deallocated!

@ finally clause: gets run at the end whether or not
exception is thrown

InputStream in = null;
try { in = new FileInputStream(fname);
. do something with in ... }
catch (IOException exn) {...}
finally { if(in != null)
in.close(); }

@ Java 7: “try-with-resources” encapsulates this pattern,
for resources implementing AutoCloseable interface

Exceptions Tail recursion Continuations
00@00000000 (o]} 000000000

throws clauses

@ In Java, potentially unhandled exceptions typically need
to be declared in the types of methods

void writeFile(String filename)
throws IOException {
InputStream in = new FileInputStream(filename);
. write to file
in.close();
}
@ This means programmers using such methods know that
certain exceptions need to be handled
@ Failure to handle or declare an exception is a type error!

o (however, certain unchecked exceptions / errors do not
need to be declared, e.g. NullPointerException)

Exceptions Tail recursion Continuations
000@0000000 (o]} 000000000

Exceptions in Scala

@ As you might expect, Scala supports a similar mechanism:

try { ... do something ... }
catch {
case exn: IOException =>
. handle IO exception...
case exn: NullPointerException =>
. handle null pointer exception...
} finally { ... cleanup ...}

e Main difference: The catch block is just a Scala pattern
match on exceptions

o Scala allows pattern matching on types (via
isInstanceOf /asInstanceOf)

@ Also: throws clauses not required

Exceptions Tail recursion Continuations
0000000000 (o]} 000000000

Exceptions for shortcutting

@ We can also use exceptions for “normal” computation

def product(l: List[Int]) = {

object Zero extends Throwable
def go(l: List[Int]): Int = 1 match {

case Nil => 1

case X::xs =>

if (x == 0) {throw Zero} else {x * go(xs)}

}
try { go(1) }
catch { case Zero => 0 }

}

@ potentially saving a lot of effort if the list contains 0

Continuations

Tail recursion
000000000

Exceptions
oo

00000800000

Exceptions in practice

e Java:
o Exceptions are subclasses of java.lang.Throwable
o Method types must declare (most) possible exceptions in
throws clause
e compile-time error if an exception can be raised and not

caught or declared
e multiple “catch” blocks; “finally” clause to allow cleanup

@ Scala:
e doesn’t require declaring thrown exceptions: this
becomes especially painful in a higher-order language...
e ‘“catch” does pattern matching

Exceptions Tail recursion Continuations
000000e0000 (o]} 000000000

Modeling exceptions

e We will formalize a simple model of exceptions:
e:=---|raise e | e handle {x = e}

@ Here, raise e throws an arbitrary value as an “exception”

@ while e; handle {x = e,} evaluates e; and, if an
exception is thrown during evaluation, binds the value v
to x and evaluates e;.

@ Define Lg,, as Lgec extended with exceptions

Exceptions Tail recursion Continuations
00000008000 (e]e) 000000000

Exceptions and types

@ Exception constructs are straightforward to typecheck:
Tu=---]exn

@ Usually, the exn type is extensible (e.g. by subclassing)

for Les

e:exn lFe:7 Ix:exnke:7

[+ raisee: T [+ e; handle {x = e} : T

o Note: raise e can have any type! (because raise e
never returns)

@ The return types of e; and e, in handler must match.

Exceptions Tail recursion Continuations
00000000800 (o]} 000000000

Interpreting exceptions

@ We can extend our Scala interpreter for Lre. to manage
exceptions as follows:

case class ExceptionV(v: Value) extends Throwable
def eval(e: Expr): Value = e match {

case Raise(e: Expr) => throw (ExceptionV(eval(e)))
case Handle(el: Expr, x: Variable, e2:Expr) =>
try {
eval(el)
} catch (ExceptionV(v)) {
eval (subst(e2,v,x))
}

@ This might seem a little circular!

Exceptions Tail recursion Continuations
00000000080 (e]e) 000000000

Semantics of exceptions

@ To formalize the semantics of exceptions, we need an
auxiliary judgment e raises v

@ Intuitively: this says that expression e does not finish
normally but instead raises exception value v

e raises v e, raises v
raise Vv raises v e; P e, raises v vi D e, raises v
e raises v

if e then ¢; else e raises v

@ The most interesting rule is the first one; the rest are
“administrative”

Exceptions Tail recursion Continuations
0000000000e (e]e) 000000000

Semantics of exceptions

@ We can now define the small-step semantics of handle
using the following additional rules:

e e

e — €
e; handle {x = e} + €| handle {x = e}

v handle {x = e} — »

e; raises v
e; handle {x = e} — ex[v/X]

o If e; steps normally to e}, take that step

@ If e; raises an exception v, substitute it in for x and
evaluate e,

Exceptions Tail recursion Continuations
00000000000 o0 000000000

Tail recursion

@ A function call is a tail call if it is the last action of the
calling function. If every recursive call is a tail call, we say
f is tail recursive.

@ For example, this version of fact is not tail recursive:

def facti(n: Int): Int =
if (n == 0) {1} else {n * (facti(n-1))}

@ But this one is:

def fact2(m: Int) = {
def go(n: Int, r: Int): Int =
if (n == 0) {r} else {go(n-1,n*r)}
go(n,1)
}

Exceptions Tail recursion Continuations
00000000000 oe 000000000

Tail recursion and efficiency

@ Tail recursive functions can be compiled more efficiently

@ because there is no more “work” to do after the recursive
call

@ In Scala, there is a (checked) annotation @tailrec to
mark tail-recursive functions for optimization

def fact2(n: Int) = {
Otailrec
def go(n: Int, r: Int): Int =
if (n == 0) {r} else {go(n-1,n*r)}
go(n,1)
}

Exceptions Tail recursion Continuations
00000000000 (e]e] 900000000

Continuations [non-examinable]

e Conditionals, while-loops, exceptions, “goto” are all form
of control abstraction

@ Continuations are a highly general notion of control
abstraction, which can be used to implement exceptions
(and much else).

@ Material covered from here on is non-examinable.

e just for fun!
o (Depends on your definition of fun, | suppose)

Exceptions Tail recursion Continuations
00000000000 (e]e] 0@0000000

Continuations

@ A continuation is a function representing “the rest of the
computation”

@ Any function can be put in “continuation-passing form"

e for example

def fact3[A]l(n: Int, k: Int => A): A =
if (n == 0) {k(1}
else {fact3(n-1, {m => k (n * m)})?}

@ This says: if nis 0, pass 1 to k

@ otherwise, recursively call with parameters n — 1 and
Ar.k(n X r)

@ “when done, multiply the result by n and pass to k"

Exceptions

00000000000

Tail recursion Continuations
(e]e) 00®000000

How does this work?

def fact3[A]l(n: Int, k: Int => A): A =
if (n == 0) {k(1)} else {fact3(n-1, {r => k (n * r)})}

11111111

fact3(3, Ax.x)

fact3(2, Ar1.(Ax.x) (3 x 1))

fact3(1, Ara.(Ar.(Ax.x) (3 x r)) (2 X r))

fact3(0, Ars.(Ar.(Ar.(Ax.x) (3 x n)) (2 x) (1 x r3))
(Ar.(Ar.(Arn.(Ax.x) B3x n)) (2xn)) (1xnr))l
(Ar2.(An.(Ax.x) (3 x n)) (2xnr)) (1x1)

(An.(Ax.x) (3x n)) (2x1)

(Ax.x) (3 x 2)

Exceptions Tail recursion Continuations
00000000000 (e]e] 000@00000

Interpreting Laitn using continuations

def eval[A](e: Expr, k: Value => A): A = e match {
// Arithmetic
case Num(n) => k(NumV(n))

case Plus(el,e2) =>
eval (el,{case NumV(vl) =>
eval(e2,{case NumV(v2) => k(NumV(vi+v2))})})

case Times(el,e2) =>
eval(el,{case NumV(vl) =>
eval(e2,{case NumV(v2) => k(NumV(vi*v2))})})

Exceptions Tail recursion Continuations
00000000000 (e]e] 000080000

Interpreting Lis using continuations

def eval[A](e: Expr, k: Value => A): A = e match {

// Booleans
case Bool(n) => k(BoolV(n))

case Eq(el,e2) =>
eval(el,{vl =>
eval(e2,{v2 => k(BoolV(vl == v2))})})

case IfThenElse(e,el,e2) =>
eval (e,{case BoolV(v) =>
if(v) { eval(el,k) } else { eval(e2,k) } })

Exceptions Tail recursion Continuations
00000000000 (e]e] 000008000

Interpreting L using continuations

def eval[A](e: Expr, k: Value => A): A = e match {

// Let-binding
case Let(el,x,e2) =>
eval(el,{v =>
eval(subst(e2,v,x),k)})

Exceptions Tail recursion Continuations
00000000000 (e]e] 000000800

Interpreting Lrec using continuations

def eval[A](e: Expr, k: Value => A): A = e match {

// Functions
case Lambda(x,ty,e) => k(LambdaV(x,ty,e))
case Rec(f,x,tyl,ty2,e) => k(RecV(f,x,tyl,ty2,e))

case Apply(el,e2) =>
eval(el, {vl =>
eval(e2, {v2 => vl match {
case LambdaV(x,ty,e) => eval(subst(e,v2,x), k)
case RecV(f,x,tyl,ty2,e) =>
eval (subst (subst(e,v2,x),vl,f) ,k)
D

Exceptions Tail recursion Continuations
00000000000 (e]e] 000000080

Interpreting Lg,, using continuations

To deal with exceptions, we add a second continuation h for
handling exceptions. (Cases seen so far just pass h along.)

def eval[A]l(e: Expr, h: Value => A,
k: Value => A): A = e match {

// Ezceptions
case Raise(e0) => eval(eO,h,h)

case Handle(el,x,e2) =>
eval(el,{v => eval(subst(e2,v,x),h,k)},k)

When raising an exception, we forget k and pass to h.
When handling, we install new handler using e2

Exceptions Tail recursion Continuations
00000000000 (e]e] 00000000

Summary

@ Today we completed our tour of

Type soundness

References and resource management
Evaluation order

Exceptions and control abstractions (today)

@ which can interact with each other and other language
features in subtle ways

o Next time:

o review lecture
e information about exam, reading

	Exceptions
	Tail recursion
	Continuations

