
Values and evaluation Big-step semantics Totality and Uniqueness

Elements of Programming Languages
Lecture 2: Evaluation

James Cheney

University of Edinburgh

September 23, 2024

Values and evaluation Big-step semantics Totality and Uniqueness

Overview

Last time:

Concrete vs. abstract syntax
Programming with abstract syntax trees
A taste of induction over expressions

Today:

Evaluation
A simple interpreter
Modeling evaluation using rules

Values and evaluation Big-step semantics Totality and Uniqueness

Values

Recall LArith expressions:

Expr ∋ e ::= e1 + e2 | e1 × e2 | n ∈ N

Some expressions, like 1,2,3, are special

They have no remaining “computation” to do
We call such expressions values.

We can define a BNF grammar rule for values:

Value ∋ v ::= n ∈ N

Values and evaluation Big-step semantics Totality and Uniqueness

Evaluation, informally

Given an expression e, what is its value?

If e = n, a number, then it is already a value.

If e = e1 + e2, evaluate e1 to v1 and e2 to v2. Then add
v1 and v2, the result is the value of e.
If e = e1 × e2, evaluate e1 to v1 and e2 to v2. Then
multiply v1 and v2, the result is the value of e.

Values and evaluation Big-step semantics Totality and Uniqueness

Evaluation, informally

Given an expression e, what is its value?

If e = n, a number, then it is already a value.
If e = e1 + e2, evaluate e1 to v1 and e2 to v2. Then add
v1 and v2, the result is the value of e.

If e = e1 × e2, evaluate e1 to v1 and e2 to v2. Then
multiply v1 and v2, the result is the value of e.

Values and evaluation Big-step semantics Totality and Uniqueness

Evaluation, informally

Given an expression e, what is its value?

If e = n, a number, then it is already a value.
If e = e1 + e2, evaluate e1 to v1 and e2 to v2. Then add
v1 and v2, the result is the value of e.
If e = e1 × e2, evaluate e1 to v1 and e2 to v2. Then
multiply v1 and v2, the result is the value of e.

Values and evaluation Big-step semantics Totality and Uniqueness

Evaluation, in Scala

If e = n, a number, then it is already a value.

If e = e1 + e2, evaluate e1 to v1 and e2 to v2. Then add
v1 and v2, the result is the value of e.

If e = e1 × e2, evaluate e1 to v1 and e2 to v2. Then
multiply v1 and v2, the result is the value of e.

def eval(e: Expr): Int = e match {

case Num(n) => n

case Plus(e1,e2) => eval(e1) + eval(e2)

case Times(e1,e2) => eval(e1) * eval(e2)

}

Values and evaluation Big-step semantics Totality and Uniqueness

Example

eval

+

1 ×

2 3

= eval(1)+eval

×

2 3

Values and evaluation Big-step semantics Totality and Uniqueness

Example

eval(1)+eval

×

2 3

 = eval(1)+(eval(2)×eval(3))

eval(1) + (eval(2)× eval(3)) = 1 + (2× 3) = 1 + 6 = 7

Values and evaluation Big-step semantics Totality and Uniqueness

Expression evaluation, more formally

To specify and reason about evaluation, we use a
evaluation judgment.

Definition (Evaluation judgment)

Given expression e and value v , we say v is the value of e if
evaluating e results in v , and we write e ⇓ v to indicate this.

(A judgment is a relation between abstract syntax trees.)

Examples:

1 + 2 ⇓ 3 1 + 2× 3 ⇓ 7 (1 + 2)× 3 ⇓ 9

Values and evaluation Big-step semantics Totality and Uniqueness

Evaluation of Values

A value is already evaluated. So, for any v , we have
v ⇓ v .

We can express the fact that v ⇓ v always holds (for any
v) as follows:

v ⇓ v

This is a rule that says that v evaluates to v always (no
preconditions)

So, for example, we can derive:

0 ⇓ 0 1 ⇓ 1 · · ·

Values and evaluation Big-step semantics Totality and Uniqueness

Evaluation of Addition

How to evaluate expression e1 + e2?

Suppose we know that e1 ⇓ v1 and e2 ⇓ v2.

Then the value of e1 + e2 is the number we get by adding
numbers v1 and v2.

We can express this as follows:

e1 ⇓ v1 e2 ⇓ v2
e1 + e2 ⇓ v1 +N v2

This is a rule that says that e1 + e2 evaluates to v1 +N v2
provided e1 evaluates to v1 and e2 evaluates to v2

Note that we write +N for the mathematical function
that adds two numbers, to avoid confusion with the
abstract syntax tree v1 + v2.

Values and evaluation Big-step semantics Totality and Uniqueness

Expression evaluation: Summary

Multiplication can be handled exactly like addition.

We will define the meaning of LArith expressions using the
following rules:

e ⇓ v

v ⇓ v
e1 ⇓ v1 e2 ⇓ v2
e1 + e2 ⇓ v1 +N v2

e1 ⇓ v1 e2 ⇓ v2
e1 × e2 ⇓ v1 ×N v2

This evaluation judgment is an example of big-step
semantics (or natural semantics)

so-called because we evaluate the whole expression “in
one step”

Values and evaluation Big-step semantics Totality and Uniqueness

Examples

We can use these rules to derive evaluation judgments for
complex expressions:

1 ⇓ 1 2 ⇓ 2
1 + 2 ⇓ 3

1 ⇓ 1
2 ⇓ 2 3 ⇓ 3
2 ∗ 3 ⇓ 6

1 + (2 ∗ 3) ⇓ 7

1 ⇓ 1 2 ⇓ 2
1 + 2 ⇓ 3 3 ⇓ 3

(1 + 2) ∗ 3 ⇓ 9

These figures are derivation trees showing how we can
derive a conclusion from axioms

The rules govern how we can construct derivation trees.
A leaf node must match a rule with no preconditions
Other nodes must match rules with preconditions.
Order matters.

Note that derivation trees “grow up” (root is at the
bottom)

Values and evaluation Big-step semantics Totality and Uniqueness

Totality and Structural induction

Question: Given any expression e, does it evaluate to a
value?

To answer this question, we can use structural induction:

Induction on structure of expressions

Given a property P of expressions, if:

P(n) holds for every number n ∈ N

for any expressions e1, e2, if P(e1) and P(e2) holds then
P(e1 + e2) also holds

for any expressions e1, e2, if P(e1) and P(e2) holds then
P(e1 × e2) also holds

Then P(e) holds for all expressions e.

Values and evaluation Big-step semantics Totality and Uniqueness

Proof by structural induction

Let’s illustrate with an example

Theorem

If e is an expression, then there exists v ∈ N such that e ⇓ v
holds.

Proof: Base case.

If e = n then e is already a value. Take v = n, then we can
derive

e ⇓ n

Values and evaluation Big-step semantics Totality and Uniqueness

Proof by structural induction

Proof: Inductive case 1.

If e = e1 + e2 then suppose e1 ⇓ v1 and e2 ⇓ v2 for some
v1, v2. Then we can use the rule:

e1 ⇓ v1 e2 ⇓ v2
e1 + e2 ⇓ v1 +N v2

to conclude that there exists v = v1 +N v2 such that e ⇓ v
holds.

Note that again it’s important to distinguish v1 +N v2 (the
number) from v1 + v2 the expression.

Values and evaluation Big-step semantics Totality and Uniqueness

Proof by structural induction

Proof: Inductive case 2.

If e = e1 × e2 then suppose e1 ⇓ v1 and e2 ⇓ v2 for some
v1, v2. Then we can use the rule:

e1 ⇓ v1 e2 ⇓ v2
e1 × e2 ⇓ v1 ×N v2

to conclude that there exists v = v1 ×N v2 such that e ⇓ v
holds.

This case is basically identical to case 1 (modulo + vs.
×).

From now on we will typically skip over such “essentially
identical” cases (but it is important to really check them).

Values and evaluation Big-step semantics Totality and Uniqueness

Uniqueness

We can also prove the uniqueness of the result value of the
expression by induction:

Theorem (Uniqueness of evaluation)

If e ⇓ v and e ⇓ v ′, then v = v ′.

Base case.

If e = n then since n ⇓ v and n ⇓ v ′ hold, the only way we
could derive these judgments is for v , v ′ to both equal n.

Values and evaluation Big-step semantics Totality and Uniqueness

Uniqueness

Inductive case.

If e = e1 + e2 then the derivations must be of the form

e1 ⇓ v1 e2 ⇓ v2
e1 + e2 ⇓ v1 +N v2

e1 ⇓ v ′
1 e2 ⇓ v ′

2

e1 + e2 ⇓ v ′
1 +N v ′

2

By induction, e1 ⇓ v1 and e1 ⇓ v ′
1 implies v1 = v ′

1, and similarly
for e2 so v2 = v ′

2. Therefore v1 +N v2 = v ′
1 +N v ′

2.

The proof for e1 × e2 is similar.

Values and evaluation Big-step semantics Totality and Uniqueness

Totality, uniqueness, and correctness

The Scala interpreter code defined earlier says how to
interpret a LArith expression as a function

The big-step rules, in contrast, specify the meaning of
expressions as a relation.

Nevertheless, totality and uniqueness guarantee that for
each e there is a unique v such that e ⇓ v

In fact, v = eval(e), that is:

Theorem (Interpreter Correctness)

For any LArith expression e, we have e ⇓ v if and only if
v = eval(e).

Proof: induction on e.

Values and evaluation Big-step semantics Totality and Uniqueness

Summary

In this lecture, we’ve covered:

A simple interpreter
Evaluation via rules
Totality and uniqueness (via structural induction)

all for the simple language LArith
Next time:

Booleans, equality, conditionals
Types

	Values and evaluation
	Big-step semantics
	Totality and Uniqueness

