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Variables

A variable is a symbol that can ‘stand for’ a value.

Often written x , y , z , . . ..

Let’s extend LIf with variables:

e ::= n ∈ N | e1 + e2 | e1 × e2
| b ∈ B | e1 == e2 | if e then e1 else e2
| x ∈ Var

Here, x is shorthand for an arbitrary variable in Var , the
set of expression variables

Let’s call this language LVar
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Aside: Operators, operators everywhere

We have now considered several binary operators

+ × ∧ ∨ ≈

as well as a unary one (¬)
It is tiresome to write their syntax, evaluation rules, and
typing rules explicitly, every time we add to the language

We will sometimes represent such operations using
schematic syntax e1 ⊕ e2 and rules:

e1 ⇓ v1 e2 ⇓ v2
e1 ⊕ e2 ⇓ v1 ⊕A v2

⊢ e1 : τ1 ⊢ e2 : τ2 ⊕ : τ1 × τ2 → τ
⊢ e1 ⊕ e2 : τ

where ⊕ : τ1 × τ2 → τ means that operator ⊕ takes
arguments τ1, τ2 and yields result of type τ

(e.g. + : int× int → int, == : τ × τ → bool)
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Substitution

We said “A variable can ‘stand for’ a value.”

What does this mean precisely?

Suppose we have x + 1 and we want x to “stand for” 42.

We should be able to replace x everywhere in x + 1 with
42:

x + 1⇝ 42 + 1

Similarly, if x “stands for” 3 then

if x == y then x else y ⇝ if 3 == y then 3 else y
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Substitution

Let’s introduce a notation for this substitution operation:

Definition (Substitution)

Given e, x , v , the substitution of v for x in e is an expression
written e[v/x ].

For LVar, define substitution as follows:

v0[v/x ] = v0
x [v/x ] = v
y [v/x ] = y (x ̸= y)

(e1 ⊕ e2)[v/x ] = e1[v/x ]⊕ e2[v/x ]
(if e then e1 else e2)[v/x ] = if e[v/x ] then e1[v/x ]

else e2[v/x ]
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Scope

As we all know from programming, we can reuse variable
names:

def foo(x: Int) = x + 1

def bar(x: Int) = x * x

The occurrences of x in foo have nothing to do with
those in bar

Moreover the following code is equivalent (since y is not
already in use in foo or bar):

def foo(x: Int) = x + 1

def bar(y: Int) = y * y
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Scope

Definition (Scope)

The scope of a variable name is the collection of program
locations in which occurrences of the variable refer to the
same thing.

I am being a little casual here: “refer to the same thing”
doesn’t necessarily mean that the two variable
occurrences evaluate to the same value at run time.

For example, the variables could refer to a shared
reference cell whose value changes over time.

In that case, the “same thing” they refer to is the
reference cell, not the value in it.
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Scope, Binding and Bound Variables

Certain occurrences of variables are called binding

Again, consider

def foo(x: Int) = x + 1

def bar(y: Int) = y * y

The occurrences of x and y on the left-hand side of the
definitions are binding

Binding occurrences define scopes: the occurrences of x
and y on the right-hand side are bound

Any variables not in scope of a binder are called free

Key idea: Renaming all binding and bound occurrences in
a scope consistently (avoiding name clashes) should not
affect meaning



Variables and Substitution Scope and Binding Evaluation and types

Simple scope: let-binding

For now, we consider a very basic form of scope:
let-binding.

e ::= · · · | x | let x = e1 in e2

We define LLet to be LIf extended with variables and let.

In an expression of the form let x = e1 in e2, we say
that x is bound in e2

Intuition: let-binding allows us to use a variable x as an
abbreviation for (the value of) some other expression:

let x = 1 + 2 in 4× x ⇝ let x = 3 in 4× x ⇝ 4× 3
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Equivalence up to consistent renaming

We wish to consider expressions equivalent (written
e1 ≡ e2) if they have the same binding structure

We can rename bound names to get equivalent
expressions:

let x = y + z in x == w ≡ let u = y + z in u == w

But some renamings change the binding structure:

let x = y + z in x == w ̸≡ let w = y + z in w == w

Intuition: Renaming to u is fine, because u is not already
“in use”.

But renaming to w changes the binding structure, since
w was already “in use”.



Variables and Substitution Scope and Binding Evaluation and types

Free variables

The set of free variables of an expression is defined as:

FV (n) = ∅
FV (x) = {x}

FV (e1 ⊕ e2) = FV (e1) ∪ FV (e2)

FV (if e then e1 else e2) = FV (e) ∪ FV (e1) ∪ FV (e2)

FV (let x = e1 in e2) = FV (e1) ∪ (FV (e2)− {x})
where X −Y is the set of elements of X that are not in Y

{x , y , z} − {y} = {x , z}
(Recall that e1 ⊕ e2 is shorthand for several cases.)
Examples:

FV (x + y) = {x , y} FV (let x = y in x) = {y}
FV (let x = x + y in z) = {x , y , z}



Variables and Substitution Scope and Binding Evaluation and types

Renaming

We will also use the following swapping operation to
rename variables:

x(y↔z) =


y if x = z
z if x = y
x otherwise

v(y↔z) = v
(e1 ⊕ e2)(y↔z) = e1(y↔z)⊕ e2(y↔z)

(if e then e1 else e2)(y↔z) = if e(y↔z) then e1(y↔z)
else e2(y↔z)

(let x = e1 in e2)(y↔z) = let x(y↔z) = e1(y↔z)
in e2(y↔z)

Example:

(let x = y in x + z)(x↔z) = let z = y in z + x
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Alpha-conversion

We can now define “consistent renaming”.

Suppose y /∈ FV (e2). Then we can rename a
let-expression as follows:

let x = e1 in e2 ⇝α let y = e1 in e2(x↔y)

This is called alpha-conversion.

Two expressions are alpha-equivalent if we can convert
one to the other using alpha-conversions.
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Examples

Examples:

let x = y + z in x == w
⇝α let u = y + z in (x == w)(x↔u)
= let u = y + z in x(x↔u) == w(x↔u)
= let u = y + z in u == w

since u /∈ FV (x == w).

But

let x = y+z in x == w ̸⇝α let w = y+z in w == w

because w already appears in x == w .
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Evaluation for let and variables

One approach: whenever we see let x = e1 in e2,
1 evaluate e1 to v1
2 replace x with v1 in e2 and evaluate that

e ⇓ v for LLet

e1 ⇓ v1 e2[v1/x ] ⇓ v2
let x = e1 in e2 ⇓ v2

Note: We always substitute values for variables, and do
not need a rule for “evaluating” a variable

This evaluation strategy is called eager, strict, or (for
historical reasons) call-by-value

This is a design choice. We will revisit this choice (and
consider alternatives) later.
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Substitution-based interpreter

type Variable = String

...

case class Var(x: Variable) extends Expr

case class Let(x: Variable, e1: Expr, e2: Expr)

extends Expr

...

def eval(e: Expr): Value = e match {

...

case Let(x,e1,e2) => {

val v = eval(e1);

val e2vx = subst(e2,v,x);

eval(e2vx)

}

Note: No case for Var(x).



Variables and Substitution Scope and Binding Evaluation and types

Types and variables

Once we add variables to our language, how does that
affect typing?

Consider
let x = e1 in e2

When is this well-formed? What type does it have?

Consider a variable on its own: what type does it have?

Different occurrences of the same variable in
different scopes could have different types.

We need a way to keep track of the types of variables
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Types for variables and let, informally

Suppose we have a way of keeping track of the types of
variables (say, some kind of map or table)

When we see a variable x , look up its type in the map.

When we see a let x = e1 in e2, find out the type of e1.
Suppose that type is τ1. Add the information that x has
type τ1 to the map, and check e2 using the augmented
map.

Note: The local information about x ’s type should not
persist beyond typechecking its scope e2.
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Types for variables and let, informally

For example:
let x = 1 in x + 1

is well-formed: we know that x must be an int since it is
set equal to 1, and then x + 1 is well-formed because x is
an int and 1 is an int.

On the other hand,

let x = 1 in if x then 42 else 17

is not well-formed: we again know that x must be an int

while checking if x then 42 else 17, but then when we
check that the conditional’s test x is a bool, we find that
it is actually an int.
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Type Environments

We write Γ to denote a type environment, or a finite map
from variable names to types, often written as follows:

Γ ::= x1 : τ1, . . . , xn : τn

In Scala, we can use the built-in type
ListMap[Variable,Type] for this.

hey, maybe that’s why the Lab has all that stuff about
ListMaps!

Moreover, we write Γ(x) for the type of x according to Γ
and Γ, x : τ to indicate extending Γ with the mapping x
to τ .
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Types for variables and let, formally

We now generalize the ideas of well-formedness:

Definition (Well-formedness in a context)

We write Γ ⊢ e : τ to indicate that e is well-formed at type τ
(or just “has type τ”) in context Γ.

The rules for variables and let-binding are as follows:

Γ ⊢ e : τ for LLet

Γ(x) = τ

Γ ⊢ x : τ
Γ ⊢ e1 : τ1 Γ, x : τ1 ⊢ e2 : τ2
Γ ⊢ let x = e1 in e2 : τ2



Variables and Substitution Scope and Binding Evaluation and types

Types for variables and let, formally

We also need to generalize the LIf rules to allow contexts:

Γ ⊢ e : τ for LIf

Γ ⊢ n : int
Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2 ⊕ : τ1 × τ2 → τ

Γ ⊢ e1 ⊕ e2 : τ

Γ ⊢ b : bool
Γ ⊢ e : bool Γ ⊢ e1 : τ Γ ⊢ e2 : τ

Γ ⊢ if e then e1 else e2 : τ

This is straightforward: we just add Γ everywhere.

The previous rules are special cases where Γ is empty.
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Examples, revisited

We can now typecheck as follows:

⊢ 1 : int
x : int ⊢ x : int x : int ⊢ 1 : int

x : int ⊢ x + 1 : int
⊢ let x = 1 in x + 1 : int

On the other hand:

⊢ 1 : int
x : int ⊢ x : bool · · ·

x : int ⊢ if x then 42 else 17 :??
⊢ let x = 1 in if x then 42 else 17 :??

is not derivable because the judgment x : int ⊢ x : bool isn’t.
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Summary

Today we’ve covered:

Variables that can be substituted with values
Scope and binding, alpha-equivalence
Let-binding and how it affects typing and evaluation

Next time:

Functions and function types
Recursion
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