
Variables and Substitution Scope and Binding Evaluation and types

Elements of Programming Languages
Lecture 4: Variables, substitution, and scope

James Cheney

University of Edinburgh

September 30, 2024

Variables and Substitution Scope and Binding Evaluation and types

Variables

A variable is a symbol that can ‘stand for’ a value.

Often written x , y , z ,

Let’s extend LIf with variables:

e ::= n ∈ N | e1 + e2 | e1 × e2
| b ∈ B | e1 == e2 | if e then e1 else e2
| x ∈ Var

Here, x is shorthand for an arbitrary variable in Var , the
set of expression variables

Let’s call this language LVar

Variables and Substitution Scope and Binding Evaluation and types

Aside: Operators, operators everywhere

We have now considered several binary operators

+ × ∧ ∨ ≈

as well as a unary one (¬)
It is tiresome to write their syntax, evaluation rules, and
typing rules explicitly, every time we add to the language

We will sometimes represent such operations using
schematic syntax e1 ⊕ e2 and rules:

e1 ⇓ v1 e2 ⇓ v2
e1 ⊕ e2 ⇓ v1 ⊕A v2

⊢ e1 : τ1 ⊢ e2 : τ2 ⊕ : τ1 × τ2 → τ
⊢ e1 ⊕ e2 : τ

where ⊕ : τ1 × τ2 → τ means that operator ⊕ takes
arguments τ1, τ2 and yields result of type τ

(e.g. + : int× int → int, == : τ × τ → bool)

Variables and Substitution Scope and Binding Evaluation and types

Substitution

We said “A variable can ‘stand for’ a value.”

What does this mean precisely?

Suppose we have x + 1 and we want x to “stand for” 42.

We should be able to replace x everywhere in x + 1 with
42:

x + 1⇝ 42 + 1

Similarly, if x “stands for” 3 then

if x == y then x else y ⇝ if 3 == y then 3 else y

Variables and Substitution Scope and Binding Evaluation and types

Substitution

Let’s introduce a notation for this substitution operation:

Definition (Substitution)

Given e, x , v , the substitution of v for x in e is an expression
written e[v/x].

For LVar, define substitution as follows:

v0[v/x] = v0
x [v/x] = v
y [v/x] = y (x ̸= y)

(e1 ⊕ e2)[v/x] = e1[v/x]⊕ e2[v/x]
(if e then e1 else e2)[v/x] = if e[v/x] then e1[v/x]

else e2[v/x]

Variables and Substitution Scope and Binding Evaluation and types

Scope

As we all know from programming, we can reuse variable
names:

def foo(x: Int) = x + 1

def bar(x: Int) = x * x

The occurrences of x in foo have nothing to do with
those in bar

Moreover the following code is equivalent (since y is not
already in use in foo or bar):

def foo(x: Int) = x + 1

def bar(y: Int) = y * y

Variables and Substitution Scope and Binding Evaluation and types

Scope

Definition (Scope)

The scope of a variable name is the collection of program
locations in which occurrences of the variable refer to the
same thing.

I am being a little casual here: “refer to the same thing”
doesn’t necessarily mean that the two variable
occurrences evaluate to the same value at run time.

For example, the variables could refer to a shared
reference cell whose value changes over time.

In that case, the “same thing” they refer to is the
reference cell, not the value in it.

Variables and Substitution Scope and Binding Evaluation and types

Scope, Binding and Bound Variables

Certain occurrences of variables are called binding

Again, consider

def foo(x: Int) = x + 1

def bar(y: Int) = y * y

The occurrences of x and y on the left-hand side of the
definitions are binding

Binding occurrences define scopes: the occurrences of x
and y on the right-hand side are bound

Any variables not in scope of a binder are called free

Key idea: Renaming all binding and bound occurrences in
a scope consistently (avoiding name clashes) should not
affect meaning

Variables and Substitution Scope and Binding Evaluation and types

Simple scope: let-binding

For now, we consider a very basic form of scope:
let-binding.

e ::= · · · | x | let x = e1 in e2

We define LLet to be LIf extended with variables and let.

In an expression of the form let x = e1 in e2, we say
that x is bound in e2

Intuition: let-binding allows us to use a variable x as an
abbreviation for (the value of) some other expression:

let x = 1 + 2 in 4× x ⇝ let x = 3 in 4× x ⇝ 4× 3

Variables and Substitution Scope and Binding Evaluation and types

Equivalence up to consistent renaming

We wish to consider expressions equivalent (written
e1 ≡ e2) if they have the same binding structure

We can rename bound names to get equivalent
expressions:

let x = y + z in x == w ≡ let u = y + z in u == w

But some renamings change the binding structure:

let x = y + z in x == w ̸≡ let w = y + z in w == w

Intuition: Renaming to u is fine, because u is not already
“in use”.

But renaming to w changes the binding structure, since
w was already “in use”.

Variables and Substitution Scope and Binding Evaluation and types

Free variables

The set of free variables of an expression is defined as:

FV (n) = ∅
FV (x) = {x}

FV (e1 ⊕ e2) = FV (e1) ∪ FV (e2)

FV (if e then e1 else e2) = FV (e) ∪ FV (e1) ∪ FV (e2)

FV (let x = e1 in e2) = FV (e1) ∪ (FV (e2)− {x})
where X −Y is the set of elements of X that are not in Y

{x , y , z} − {y} = {x , z}
(Recall that e1 ⊕ e2 is shorthand for several cases.)
Examples:

FV (x + y) = {x , y} FV (let x = y in x) = {y}
FV (let x = x + y in z) = {x , y , z}

Variables and Substitution Scope and Binding Evaluation and types

Renaming

We will also use the following swapping operation to
rename variables:

x(y↔z) =

y if x = z
z if x = y
x otherwise

v(y↔z) = v
(e1 ⊕ e2)(y↔z) = e1(y↔z)⊕ e2(y↔z)

(if e then e1 else e2)(y↔z) = if e(y↔z) then e1(y↔z)
else e2(y↔z)

(let x = e1 in e2)(y↔z) = let x(y↔z) = e1(y↔z)
in e2(y↔z)

Example:

(let x = y in x + z)(x↔z) = let z = y in z + x

Variables and Substitution Scope and Binding Evaluation and types

Alpha-conversion

We can now define “consistent renaming”.

Suppose y /∈ FV (e2). Then we can rename a
let-expression as follows:

let x = e1 in e2 ⇝α let y = e1 in e2(x↔y)

This is called alpha-conversion.

Two expressions are alpha-equivalent if we can convert
one to the other using alpha-conversions.

Variables and Substitution Scope and Binding Evaluation and types

Examples

Examples:

let x = y + z in x == w
⇝α let u = y + z in (x == w)(x↔u)
= let u = y + z in x(x↔u) == w(x↔u)
= let u = y + z in u == w

since u /∈ FV (x == w).

But

let x = y+z in x == w ̸⇝α let w = y+z in w == w

because w already appears in x == w .

Variables and Substitution Scope and Binding Evaluation and types

Evaluation for let and variables

One approach: whenever we see let x = e1 in e2,
1 evaluate e1 to v1
2 replace x with v1 in e2 and evaluate that

e ⇓ v for LLet

e1 ⇓ v1 e2[v1/x] ⇓ v2
let x = e1 in e2 ⇓ v2

Note: We always substitute values for variables, and do
not need a rule for “evaluating” a variable

This evaluation strategy is called eager, strict, or (for
historical reasons) call-by-value

This is a design choice. We will revisit this choice (and
consider alternatives) later.

Variables and Substitution Scope and Binding Evaluation and types

Substitution-based interpreter

type Variable = String

...

case class Var(x: Variable) extends Expr

case class Let(x: Variable, e1: Expr, e2: Expr)

extends Expr

...

def eval(e: Expr): Value = e match {

...

case Let(x,e1,e2) => {

val v = eval(e1);

val e2vx = subst(e2,v,x);

eval(e2vx)

}

Note: No case for Var(x).

Variables and Substitution Scope and Binding Evaluation and types

Types and variables

Once we add variables to our language, how does that
affect typing?

Consider
let x = e1 in e2

When is this well-formed? What type does it have?

Consider a variable on its own: what type does it have?

Different occurrences of the same variable in
different scopes could have different types.

We need a way to keep track of the types of variables

Variables and Substitution Scope and Binding Evaluation and types

Types for variables and let, informally

Suppose we have a way of keeping track of the types of
variables (say, some kind of map or table)

When we see a variable x , look up its type in the map.

When we see a let x = e1 in e2, find out the type of e1.
Suppose that type is τ1. Add the information that x has
type τ1 to the map, and check e2 using the augmented
map.

Note: The local information about x ’s type should not
persist beyond typechecking its scope e2.

Variables and Substitution Scope and Binding Evaluation and types

Types for variables and let, informally

For example:
let x = 1 in x + 1

is well-formed: we know that x must be an int since it is
set equal to 1, and then x + 1 is well-formed because x is
an int and 1 is an int.

On the other hand,

let x = 1 in if x then 42 else 17

is not well-formed: we again know that x must be an int

while checking if x then 42 else 17, but then when we
check that the conditional’s test x is a bool, we find that
it is actually an int.

Variables and Substitution Scope and Binding Evaluation and types

Type Environments

We write Γ to denote a type environment, or a finite map
from variable names to types, often written as follows:

Γ ::= x1 : τ1, . . . , xn : τn

In Scala, we can use the built-in type
ListMap[Variable,Type] for this.

hey, maybe that’s why the Lab has all that stuff about
ListMaps!

Moreover, we write Γ(x) for the type of x according to Γ
and Γ, x : τ to indicate extending Γ with the mapping x
to τ .

Variables and Substitution Scope and Binding Evaluation and types

Types for variables and let, formally

We now generalize the ideas of well-formedness:

Definition (Well-formedness in a context)

We write Γ ⊢ e : τ to indicate that e is well-formed at type τ
(or just “has type τ”) in context Γ.

The rules for variables and let-binding are as follows:

Γ ⊢ e : τ for LLet

Γ(x) = τ

Γ ⊢ x : τ
Γ ⊢ e1 : τ1 Γ, x : τ1 ⊢ e2 : τ2
Γ ⊢ let x = e1 in e2 : τ2

Variables and Substitution Scope and Binding Evaluation and types

Types for variables and let, formally

We also need to generalize the LIf rules to allow contexts:

Γ ⊢ e : τ for LIf

Γ ⊢ n : int
Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2 ⊕ : τ1 × τ2 → τ

Γ ⊢ e1 ⊕ e2 : τ

Γ ⊢ b : bool
Γ ⊢ e : bool Γ ⊢ e1 : τ Γ ⊢ e2 : τ

Γ ⊢ if e then e1 else e2 : τ

This is straightforward: we just add Γ everywhere.

The previous rules are special cases where Γ is empty.

Variables and Substitution Scope and Binding Evaluation and types

Examples, revisited

We can now typecheck as follows:

⊢ 1 : int
x : int ⊢ x : int x : int ⊢ 1 : int

x : int ⊢ x + 1 : int
⊢ let x = 1 in x + 1 : int

On the other hand:

⊢ 1 : int
x : int ⊢ x : bool · · ·

x : int ⊢ if x then 42 else 17 :??
⊢ let x = 1 in if x then 42 else 17 :??

is not derivable because the judgment x : int ⊢ x : bool isn’t.

Variables and Substitution Scope and Binding Evaluation and types

Summary

Today we’ve covered:

Variables that can be substituted with values
Scope and binding, alpha-equivalence
Let-binding and how it affects typing and evaluation

Next time:

Functions and function types
Recursion

	Variables and Substitution
	Scope and Binding
	Evaluation and types

