[Named functions](#page-2-0) and the contractions and the contractions and the contractions opportunity of the contractions contractions and contract of the contractions opportunity of the contractions opportunity of the contractions o

KORK ERKER ADA ADA KORA

Elements of Programming Languages

Lecture 5: Functions and recursion

James Cheney

University of Edinburgh

October 3, 2024

KORK EXTERNE PROVIDE

Overview

- So far, we've covered
	- a arithmetic
	- booleans, conditionals (if then else)
	- variables and simple binding (let)
- \bullet L_{Let} allows us to compute values of expressions
	- and use variables to store intermediate values
	- but not to define *computations* on unknown values.
	- That is, there is no feature analogous to Haskell's functions, Scala's def, or methods in Java.
- Today, we consider *functions* and *recursion*

Named functions

A simple way to add support for functions is as follows:

 $e ::= \cdots | f(e) |$ let fun $f(x : \tau) = e_1$ in e_2

- \bullet Meaning: Define a function called f that takes an argument x and whose result is the expression e_1 .
- Make f available for use in e_2 .
- (That is, the scope of x is e_1 , and the scope of f is e_2 .)
- This is pretty limited:
	- for now, we consider one-argument functions only.
	- no recursion
	- functions are not first-class "values" (e.g. can only call f , can't pass a function as an argument to another)

KORK ERKER ADAM ADA

• We can define a squaring function:

let fun square(x : int) = $x \times x$ in \cdots

• or (assuming inequality tests) absolute value:

let fun $abs(x : \text{int}) = \text{if } x < 0 \text{ then } -x \text{ else } x \text{ in } \cdots$

KORKARYKERKER POLO

Types for named functions

- We introduce a type constructor $\tau_1 \rightarrow \tau_2$, meaning "the type of functions taking arguments in τ_1 and returning τ_2 "
- We can typecheck named functions as follows:

$$
\frac{\Gamma, x:\tau_1 \vdash e_1 : \tau_2 \quad \Gamma, f:\tau_1 \rightarrow \tau_2 \vdash e_2 : \tau}{\Gamma \vdash \text{let fun } f(x : \tau_1) = e_1 \text{ in } e_2 : \tau}
$$
\n
$$
\frac{\Gamma(f) = \tau_1 \rightarrow \tau_2 \quad \Gamma \vdash e : \tau_1}{\Gamma \vdash f(e) : \tau_2}
$$

For convenience, we just use a single environment Γ for both variables and function names.

[Named functions](#page-2-0) and a secure and a secure and a security and a security and a security of the security of the

Example

Typechecking of $abs(-42)$

KORK EXTERNE PROVIDE

Semantics of named functions

- We can define rules for evaluating named functions as follows.
- First, let δ be an environment mapping function names f to their "definitions", which we'll write as $\langle x \Rightarrow e \rangle$.
- When we encounter a function definition, add it to δ .

$$
\frac{\delta[f \mapsto \langle x \Rightarrow e_1 \rangle], e_2 \Downarrow \mathsf{v}}{\delta, \text{let fun } f(x:\tau) = e_1 \text{ in } e_2 \Downarrow \mathsf{v}}
$$

When we encounter an application, look up the definition and evaluate the body with the argument value substituted for the argument:

$$
\frac{\delta, e_0 \Downarrow v_0 \quad \delta(f) = \langle x \Rightarrow e \rangle \quad \delta, e[v_0/x] \Downarrow v}{\delta, f(e_0) \Downarrow v}
$$

KORKARYKERKER POLO

[Named functions](#page-2-0) and a new metal and a series are a series and a series and a series and a series and a series a
Named subsequently and a series and a series and a series and a series are a series and a series and a series

Examples

Evaluation of abs(−42) δ, −42 < 0 ⇓ true δ, −(−42) ⇓ 42 δ, if −42 < 0 then − (−42) else −42 ⇓ 42 $\delta, -42$ \Downarrow -42 $\delta(abs) = \langle x \Rightarrow e_{abs} \rangle$ $\delta, e_{abs}[-42/x]$ \Downarrow 42 . . . δ, abs(−42) ⇓ 42 let fun $abs(x : \text{int}) = e_{abs}$ in $abs(-42) \Downarrow 42$ where $e_{abs} = \text{if } x < 0 \text{ then } -x \text{ else } x \text{ and }$ $\delta = [abs \mapsto \langle x \Rightarrow e_{abs} \rangle]$

KORK EXTERNE PROVIDE

KORK EXTERNE PROVIDE

Static vs. dynamic scope

- The terms *static* and *dynamic* scope are sometimes used.
- In static scope, the scope and binding occurrences of all variables can be determined from the program text, without actually running the program.
- In dynamic scope, this is not necessarily the case: the scope of a variable can depend on the context in which it is evaluated at run time.

Static vs. dynamic scope

Function bodies can contain free variables. Consider:

let
$$
x = 1
$$
 in
let fun $f(y : \text{int}) = x + y$ in
let $x = 10$ in $f(3)$

- \bullet Here, x is bound to 1 at the time f is defined, but re-bound to 10 when by the time f is called.
- There are two reasonable-seeming result values, depending on which x is in scope:
	- Static scope uses the binding $x = 1$ present when f is defined, so we get $1 + 3 = 4$.
	- Dynamic scope uses the binding $x = 10$ present when f is used, so we get $10 + 3 = 13$.

 Ω

Dynamic scope breaks type soundness

• Even worse, what if we do this:

```
let x = 1 in
let fun f(y : int) = x + y in
let x = true in f(3)
```
- When we typecheck f , x is an integer, but it is re-bound to a boolean by the time f is called.
- The program as a whole typechecks, but we get a run-time error: dynamic scope makes the type system unsound!
- Early versions of LISP used dynamic scope, and it is arguably useful in an untyped language.
- Dynamic scope is now generally acknowledged as a mistake, though present in e.g. Java[Sc](#page-9-0)r[ip](#page-11-0)[t,](#page-9-0) [P](#page-10-0)[yt](#page-1-0)[h](#page-2-0)[o](#page-11-0)[n](#page-1-0)

KO KA (FRA 1988) DE XONO

Anonymous, first-class functions

• In many languages (including Java as of version 8), we can also write an expression for a function without a name:

 $\lambda x : \tau$. e

- Here, λ (Greek letter lambda) introduces an anonymous function expression in which x is bound in e .
	- (The λ -notation dates to Church's higher-order logic (1940); there are several competing stories about why λ is used.)
- In Scala one writes: $(x: Type) \Rightarrow e$
- In Java 8: $x \rightarrow e$ (no type needed)
- In Haskell: $\x \rightarrow -$ e or $\x : Type \rightarrow e$
- The *lambda-calculus* is a model of anonymous functions

Types for the λ -calculus

• We define L_{Lam} to be L_{Let} extended with typed λ -abstraction and application as follows:

$$
e ::= \cdots | e_1 e_2 | \lambda x : \tau. e
$$

$$
\tau ::= \cdots | \tau_1 \rightarrow \tau_2
$$

 $\bullet \tau_1 \rightarrow \tau_2$ is (again) the type of functions from τ_1 to τ_2 . • We can extend the typing rules as follows:

$\Gamma \vdash e : \tau$	for L_{Lam}	
$\frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \lambda x : \tau_1 \cdot e : \tau_1 \rightarrow \tau_2}$	$\Gamma \vdash e_1 : \tau_1 \rightarrow \tau_2$	$\Gamma \vdash e_2 : \tau_1$

Evaluation for the λ -calculus

• Values are extended to include λ -abstractions λx . e:

$$
v ::= \cdots | \lambda x. e
$$

(Note: We elide the type annotations when not needed.) • and the evaluation rules are extended as follows:

• Note: Combined with let, this subsumes named functions! We can just define let fun as "syntactic sugar"

l[et](#page-12-0) fu[n](#page-15-0) $f(x:\tau) = e_1$ [i](#page-14-0)n $e_2 \iff \text{let } f = \lambda x:\tau.$ e_1 in e_2 e_2
 $\iff \text{let } f = \lambda x:\tau.$ e_1 in e_2

KORKARYKERKER POLO

 \bullet In L_{Lam}, we can define a higher-order function that calls its argument twice:

let fun twice(f: $\tau \to \tau$) = λx : τ . $f(f(x))$ in \cdots

• and we can define the composition of two functions:

let compose = $\lambda f : \tau_2 \to \tau_3$. $\lambda g : \tau_1 \to \tau_2$. $\lambda x : \tau_1$. $f(g(x))$ in \cdots

• Notice we are using repeated λ -abstractions to handle multiple arguments

Recursive functions

 \bullet However, L_{Lam} still cannot express general recursion, e.g. the factorial function:

let fun $fact(n:int) =$ if $n == 0$ then 1 else $n \times$ fact $(n - 1)$ in \cdots

is not allowed because *fact* is not in scope inside the function body.

- We can't write it directly as a λ -expression λx : τ . e either because we don't have a "name" for the function we're trying to define inside e.
	- (Technically, we could get around this problem in an untyped version of the lambda calculus...)

Named recursive functions

- In many languages, named function definitions are recursive by default. (C, Python, Java, Haskell, Scala)
- Others explicitly distinguish between nonrecursive and recursive (named) function definitions. (Scheme, OCaml, $F#$
	- let $f(x) = e$ // nonrecursive: // only x is in scope in e let rec $f(x) = e$ // recursive: // both f and x in scope in e
- Note: In the *untyped* λ -calculus, let rec is *definable* using a special λ -term called the Y combinator

Anonymous recursive functions

• Inspired by L_{Lam} , we introduce a notation for anonymous recursive functions:

$$
e ::= \cdots | \text{ rec } f(x : \tau_1) : \tau_2. e
$$

- \bullet Idea: f is a local name for the function being defined, and is in scope in e , along with the argument x .
- \bullet We define L_{Rec} to be L_{Lam} extended with rec.
- We can then define let rec as syntactic sugar:

$$
\begin{array}{l}\text { let } \text{rec } f\big(x:\tau_1\big):\tau_2=e_1 \text { in } e_2 \\ \Longleftrightarrow \text { let } f=\text{rec } f\big(x:\tau_1\big):\tau_2. \text { }e_1 \text { in } e_2 \end{array}
$$

• Note: The outer f is in scope in e_2 , while the inner one is in scop[e](#page-14-0) in e_1 . The two f bindings a[re](#page-16-0) [un](#page-18-0)[r](#page-16-0)[ela](#page-17-0)[t](#page-18-0)e[d](#page-15-0)[.](#page-22-0)

Anonymous recursive functions: typing

 \bullet The types of L_{Rec} are the same. We just add one rule:

- This says: to typecheck a recursive function,
	- bind f to the type $\tau_1 \rightarrow \tau_2$ (so that we can call it as a function in e),
	- bind x to the type τ_1 (so that we can use it as an argument in e),
	- typecheck e.
- Since we use the same function type, the existing function application rule is unchanged.

[Anonymous functions](#page-11-0) **Anonymous** functions **Anonymous** functions **[Recursion](#page-15-0)**

KORKA SERKER YOUR

Anonymous recursive functions: semantics

• Like a λ -term, a recursive function is a value:

$$
v ::= \cdots | \text{ rec } f(x). e
$$

• We can evaluate recursive functions as follows:

$$
\fbox{e} \Downarrow v \text{ for } L_{\text{Rec}}
$$
\n
$$
\fbox{rec } f(x) \text{. } e \Downarrow \text{rec } f(x) \text{. } e
$$
\n
$$
\fbox{enc } f(x) \text{. } e \quad e_2 \Downarrow v_2 \text{. } e[\text{rec } f(x) \text{. } e/f, v_2/x] \Downarrow v
$$
\n
$$
\fbox{enc } e_1 \text{. } e_2 \Downarrow v
$$

• To apply a recursive function, we substitute the argument for x and the whole rec expression for f .

KORKARYKERKER POLO

Examples

- We can now write, typecheck and run fact
	- \bullet (you will implement an evaluator for L_{Rec} in Assignment 2 that can do this)
- In fact, L_{Rec} is *Turing-complete* (though it is still so limited that it is not very useful as a general-purpose language)
- (Turing complete means: able to simulate any Turing machine, that is, any computable function ℓ any other programming language. ITCS covers Turing completeness and computability in depth.)

[Named functions](#page-2-0) [Anonymous functions](#page-11-0) [Recursion](#page-15-0)

KORKARYKERKER POLO

Mutual recursion

- What if we want to define mutually recursive functions?
- A simple example:

def even(n: Int) = if n == 0 then true else odd(n-1) def odd(n: Int) = if $n == 0$ then false else even(n-1)

Perhaps surprisingly, we can't easily do this!

• One solution: generalize let rec:

let rec $f_1(x_1:\tau_1):\tau_1'=e_1$ and \cdots and $f_n(x_n:\tau_n):\tau_n'=e_n$ in e

where f_1, \ldots, f_n are all in scope in bodies e_1, \ldots, e_n .

This gets messy fast; we'll revisit this issue later.

KORK ERKER ADA ADA KORA

Summary

- Today we have covered:
	- Named functions
	- Static vs. dynamic scope
	- Anonymous functions
	- Recursive functions
- along with our first "composite" type, the function type $\tau_1 \rightarrow \tau_2$.
- Next time
	- Data structures: Pairs (combination) and variants (choice)