KORK ERKER ADA ADA KORA

Elements of Programming Languages Lecture 6: Data structures

James Cheney

University of Edinburgh

October 7, 2024

The story so far

- We've now covered the main ingredients of any programming language:
	- Abstract syntax
	- Semantics/interpretation
	- Types
	- Variables and binding
	- Functions and recursion
- but the language is still very limited: there are no "data structures" (records, lists, variants), pointers, side-effects etc.
- Let alone even more advanced features such as classes. interfaces, or generics
- Over the next few lectures we will show how to add them, consolidating understanding of the foundations along the way.**KORK EXTERNE PROVIDE**

Pairs

- The simplest way to combine data structures: pairing
	- $(1, 2)$ (true, false) $(1, (\text{true}, \lambda x : \text{int}.x + 2))$
- **If we have a pair, we can extract one of the components:**

$$
\mathtt{fst}\ (1,2) \leadsto 1 \qquad \mathtt{snd}\ (\mathtt{true},\mathtt{false}) \leadsto \mathtt{false}
$$

snd $(1,(\text{true}, \lambda x:\text{int}.x + 2)) \rightsquigarrow (\text{true}, \lambda x:\text{int}.x + 2)$

• Finally, we can often *pattern match* against a pair, to extract both components at once:

let pair
$$
(x, y) = (1, 2)
$$
 in $(y, x) \rightsquigarrow (2, 1)$

KO KA KO KERKER KONGK

Pairs in various languages

- Functional languages typically have explicit syntax (and types) for pairs
- Java and C-like languages have "record", "struct" or "class" structures that accommodate multiple, named fields.
	- A pair type can be defined but is not built-in and there is no support for pattern-matching

Syntax and Semantics of Pairs

• Syntax of pair expressions and values:

$$
\begin{array}{ll} e & ::= & \cdots \mid (e_1, e_2) \mid \texttt{fst}\ e \mid \texttt{snd}\ e \\ & | & \texttt{let}\ \texttt{pair}\ (x,y) = e_1\ \texttt{in}\ e_2 \\ v & ::= & \cdots \mid (v_1, v_2) \end{array}
$$

Types for Pairs

• Types for pair expressions:

$$
\tau \ ::= \ \cdots \ | \ \tau_1 \times \tau_2
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0$ \mathbb{R}^{n-1} $2Q$

let vs. fst and snd

• The fst and snd operations are definable in terms of let pair:

$$
\begin{array}{rcl}\n\text{fst } e & \Longleftrightarrow & \text{let pair } (x, y) = e \text{ in } x \\
\text{snd } e & \Longleftrightarrow & \text{let pair } (x, y) = e \text{ in } y\n\end{array}
$$

Actually, the let pair construct is definable in terms of let, fst, snd too:

$$
\begin{aligned} \text{let pair }(&x,y)=e_1\text{ in }e_2\\ &\iff \text{let }p=e_1\text{ in }e_2[\text{fst }p/x,\text{snd }p/y] \end{aligned}
$$

• We typically just use the (simpler) fst and snd constructs and treat let pair as syntactic sugar.

More generally: tuples and records

• Nothing stops us from adding triples, quadruples, ..., n-tuples.

$$
(1, 2, 3)
$$
 (true, 2, 3, $\lambda x.(x, x)$)

• As mentioned earlier, many languages prefer *named* record syntax:

 $(a: 1, b: 2, c: 3)$ $(b: true, n_1: 2, n_2: 3, f: \lambda x.(x, x))$

- (cf. class fields in Java, structs in C, etc.)
- These are undeniably useful, but are definable using pairs.
- We'll revisit named record-style constructs when we consider classes and modules.

Special case: the "unit" type

• Nothing stops us from adding a type of 0-tuples: a data structure with no data. This is often called the unit type, or unit.

$$
e ::= \cdots | ()
$$
\n
$$
v ::= \cdots | ()
$$
\n
$$
\tau ::= \cdots | \text{unit}
$$
\n
$$
\overline{() \Downarrow ()} \quad \overline{\Gamma \vdash () : \text{unit}}
$$

- this may seem a little pointless: why bother to define a type with no (interesting) data and no operations?
- This is analogous to void in C/Java; in Haskell and Scala it is called ().

KORK EXTERNE PROVIDE

Motivation for variant types

- Pairs allow us to combine two data structures (a τ_1 and a τ_2).
- What if we want a data structure that allows us to choose between different options?
- We've already seen one example: booleans.
	- A boolean can be one of two values.
	- Given a boolean, we can look at its value and choose among two options, using if then else .
- Can we generalize this idea?

Another example: null values

- Sometimes we want to produce either a regular value or a special "null" value.
- Some languages, including SQL and Java, allow many types to have null values by default.
	- This leads to the need for defensive programming to avoid the dreaded NullPointerException in Java, or strange query behavior in SQL
	- Sir Tony Hoare (inventor of Quicksort) introduced null references in Algol in 1965 "simply because it was so easy to implement"!
	- he now calls them "the billion dollar mistake": http://www.infoq.com/presentations/←- Null-References-The-Billion←- -Dollar-Mistake-Tony-Hoare

Another problem with Null

Tags Users Badges Unanswered **Questions**

KORK EXTERNE PROVIDE

Ask Question

How do I correctly pass the string "Null" (an employee's proper surname) to a SOAP web service from ActionScript 3?

We have an employee whose last name is Null. Our employee lookup application is killed when asked 4 years ago that last name is used as the search term (which happens to be quite often now). The error viewed 766478 times 3508 received (thanks Fiddler!) is: active 1 month ago <soapenv:Fault> <faultcode>soapenv:Server.userException</faultcode> ★ <faultstring>coldfusion.xml.rpc.CFCInvocationException: [coldfusion.runtime.MissingArgume> Featured on Meta 763 **A** The Power of Teams: A Cute, huh? Proposed Expansion of Stack Overflow The parameter type is string.

KORK ERKER ADA DI VOLO

What would be better?

• Consider an option type:

$$
e ::= \cdots | \text{ none} | \text{ some}(e)
$$
\n
$$
\tau ::= \cdots | \text{ option}[\tau]
$$
\n
$$
\begin{array}{ccc}\n & \Gamma \vdash e : \tau \\
\hline\n\Gamma \vdash none : \text{option}[\tau] & \Gamma \vdash some(e) : \text{option}[\tau]\n\end{array}
$$

- Then we can use none to indicate absence of a value, and some (e) to give the present value.
- Morover, the type of an expression tells us whether null values are possible.

Error codes

- The option type is useful but still a little limited: we either get a τ value, or nothing
- **If none means failure, we might want to get some more** information about why the failure occurred.
- We would like to be able to return an error code
	- In older languages, notably C, special values are often used for errors
	- Example: read reads from a file, and either returns number of bytes read, or -1 representing an error
	- The actual error code is passed via a global variable
	- It's easy to forget to check this result, and the function's return value can't be used to return data.
	- Other languages use exceptions, which we'll cover much later

The OK-or-error type

- **•** Suppose we want to return *either* a normal value τ_{ok} or an error value τ_{err} .
- Let's write ok 0 r $Err[\tau_{ok}, \tau_{err}]$ for this type.

$$
e ::= \cdots | \text{ok}(e) | \text{err}(e)
$$

$$
\tau ::= \cdots | \text{okOrErr}[\tau_1, \tau_2]
$$

- Basic idea:
	- if e has type τ_{ok} , then ok(e) has type okOrErr[τ_{ok} , τ_{err}]
	- if e has type τ_{err} , then $err(e)$ has type okOr $Err[\tau_{ok}, \tau_{err}]$

How do we use ok 0 r $Err|\tau_{ok}, \tau_{err}|$?

- When we talked about option[τ], we didn't really say how to use the results.
- **If** we have a okOrErr[τ_{ok} , τ_{err}] value v, then we want to be able to branch on its value:
	- If v is ok(v_{ok}), then we probably want to get at v_{ok} and use it to proceed with the computation
	- If v is $err(v_{err})$, then we probably want to get at v_{err} to report the error and stop the computation.
- In other words, we want to perform case analysis on the value, and extract the wrapped value for further processing

Case analysis

• We consider a case analysis construct as follows:

case e of
$$
\{ok(x) \Rightarrow e_{ok}
$$
; err(y) $\Rightarrow e_{err}\}$

- This is a generalized conditional: "If e evaluates to ok($v_{\alpha k}$), then evaluate $e_{\alpha k}$ with $v_{\alpha k}$ replacing x, else it evaluates to $err(v_{err})$ so evaluate e_{err} with v_{err} replacing y."
- Here, x is bound in e_{ok} and y is bound in e_{err}
- This construct should be familiar by now from Scala:

e match $\{ \text{case } \Omega$ k $(x) \Rightarrow e1$ case $Err(x) \Rightarrow e2$ } // note slightly different syntax

Variant types, more generally

- Notice that the ok and err cases are completely symmetric
- Generalizing this type might also be useful for other situations than error handling...
- Therefore, let's rename and generalize the notation:

$$
\begin{array}{ll}\n e & ::= & \cdots \mid \text{left}(e) \mid \text{right}(e) \\
 & \mid & \text{case } e \text{ of } \{ \text{left}(x) \Rightarrow e_1 \; ; \; \text{right}(y) \Rightarrow e_2 \} \\
 v & ::= & \cdots \mid \text{left}(v) \mid \text{right}(v) \\
 \tau & ::= & \cdots \mid \tau_1 + \tau_2\n \end{array}
$$

• We will call type $\tau_1 + \tau_2$ a variant type (sometimes also called sum or disjoint union)

Types for variants

• We extend the typing rules as follows:

$\Gamma \vdash \tau$	for variant types	
$\Gamma \vdash e : \tau_1$	$\Gamma \vdash e : \tau_2$	
$\overline{\Gamma \vdash left(e) : \tau_1 + \tau_2}$	$\overline{\Gamma \vdash right(e) : \tau_1 + \tau_2}$	
$\Gamma \vdash e : \tau_1 + \tau_2$	$\Gamma, x : \tau_1 \vdash e_1 : \tau$	$\Gamma, y : \tau_2 \vdash e_2 : \tau$
$\overline{\Gamma \vdash case \ e \ of \{left(x\right) \Rightarrow e_1 ; \ right(y) \Rightarrow e_2\} : \tau}$		

- Idea: left and right "wrap" τ_1 or τ_2 as $\tau_1 + \tau_2$
- Idea: Case is like conditional, only we can use the wrapped value extracted from $left(v\right)$ or right(v).

Semantics of variants

• We extend the evaluation rules as follows:

- Creating a $\tau_1 + \tau_2$ value is straightforward.
- Case analysis branches on the $\tau_1 + \tau_2$ value

Defining Booleans and option types

 \bullet The Boolean type bool can be defined as unit $+$ unit

$$
\mathtt{true} \iff \mathtt{left}() \quad \mathtt{false} \iff \mathtt{right}()
$$

Conditional is then defined as case analysis, ignoring the variables

if e then e_1 else e_2 \iff case e of $\{\text{left}(x) \Rightarrow e_1 : \text{right}(y) \Rightarrow e_2\}$

• Likewise, the option type is definable as τ + unit:

$$
\verb|some(e)|\iff \verb|left(e) \quad \verb|none|\iff \verb|right()
$$

Datatypes: named variants and case classes

- Programming directly with binary variants is awkward
- As for pairs, the $\tau_1 + \tau_2$ type can be generalized to *n*-ary choices or named variants
- As we saw in Lecture 1 with abstract syntax trees, variants can be represented in different ways
	- Haskell supports "datatypes" which give constructor names to the cases
	- In Java, can use classes and inheritance to simulate this, verbosely (Python similar). Recent extensions help with this.
	- Scala does not directly support named variant types, but provides "case classes" and pattern matching
	- We'll revisit case classes and variants later in discussion of object-oriented programming.

The empty type

• We can also consider the 0-ary variant type

 τ : $=$ \cdots | empty

with no associated expressions or values

- Scala provides Nothing as a built-in type; most languages do not
	- [Perhaps confusingly, this is not the same thing at all as the void or unit type!]
- We will talk about Nothing again when we cover subtyping
	- (Insert Seinfeld joke here, if anyone is old enough to remember that.)

KORK ERKER ADAM ADA

Summary

- Today we've covered two primitive types for structured data:
	- Pairs, which combine two or more data structures
	- Variants, which represent alternative choices among data structures
	- Special cases (unit, empty) and generalizations (records, datatypes)
- This is a pattern we'll see over and over:
	- Define a type and expressions for creating and using its elements
	- Define typing rules and evaluation rules
- **O** Next time:
	- Named records and variants
	- Subtyping