
Parametric Polymorphism Type inference

Elements of Programming Languages
Lecture 8: Polymorphism and type inference

James Cheney

University of Edinburgh

October 17, 2024

Parametric Polymorphism Type inference

Overview

Last week we covered type definitions, records, datatypes,
subtyping

This week and next week, we will cover additional forms
of abstraction

polymorphism, type inference
modules, interfaces
objects, classes

Today:

polymorphism and type inference

Parametric Polymorphism Type inference

Consider the humble identity function

A function that returns its input:

def idInt(x: Int) = x

def idString(x: String) = x

def idPair(x: (Int,String)) = x

Does the same thing no matter what the type is.

But we cannot just write this:

def id(x) = x

(In Scala, every variable needs to have a type.)

Parametric Polymorphism Type inference

Another example

Consider a pair “swap” operation:

def swapInt(p: (Int,Int)) = (p._2,p._1)

def swapString(p: (String,String)) = (p._2,p._1)

def swapIntString(p: (Int,String)) = (p._2,p._1)

Again, the code is the same in both cases; only the types
differ.

But we can’t write

def swap(p) = (p._2,p._1)

What type should p have?

Parametric Polymorphism Type inference

Another example

Consider a higher-order function that calls its argument
twice:

def twiceInt(f: Int => Int) = {x: Int => f(f(x))}

def twiceStr(f: String => String) =

{x: String => f(f(x))}

Again, the code is the same in both cases; only the types
differ.

But we can’t write

def twice(f) = {x => f(f(x))}

What types should f and x have?

Parametric Polymorphism Type inference

Type parameters

In Scala, function definitions can have type parameters

def id[A](x: A): A = x

This says: given a type A, the function id[A] takes an A and
returns an A.

def swap[A,B](p: (A,B)): (B,A) = (p._2,p._1)

This says: given types A,B, the function swap[A,B] takes a
pair (A,B) and returns a pair (B,A).

def twice[A](f: A => A): A => A = {x:A => f(f(x))}

This says: given a type A, the function twice[A] takes a
function f: A => A and returns a function of type A => A

Parametric Polymorphism Type inference

Parametric Polymorphism

Scala’s type parameters are an example of a phenomenon
called polymorphism (= “many shapes”)

More specifically, parametric polymorphism because the
function is parameterized by the type.

Its behavior cannot “depend on” what type replaces
parameter A.
The type parameter A is abstract

We also sometimes refer to A, B, C etc. as type variables

Parametric Polymorphism Type inference

Polymorphism: More examples

Polymorphism is even more useful in combination with
higher-order functions.

Recall compose from the lab:

def compose[A,B,C](f: A => B, g: B => C) =

{x:A => g(f(x))}

Likewise, the map and filter functions:

def map[A,B](f: A => B, x: List[A]): List[B] = ...

def filter[A](f: A => Bool, x: List[A]): List[A] = ...

(though in Scala these are usually defined as methods of
List[A] so the A type parameter and x variable are
implicit)

Parametric Polymorphism Type inference

Formalization

We add type variables A,B ,C , . . ., type abstractions,
type applications, and polymorphic types:

e ::= · · · | ΛA. e | e[τ]
τ ::= · · · | A | ∀A. τ

We also use (capture-avoiding) substitution of types for
type variables in expressions and types.

The type ∀A. τ is the type of expressions that can have
type τ [τ ′/A] for any choice of A. (A is bound in τ .)

The expression ΛA. e introduces a type variable for use in
e. (Thus, A is bound in any type annotations in e.)

The expression e[τ] instantiates a type abstraction

Define LPoly to be the extension of LData with these
features

Parametric Polymorphism Type inference

Formalization: Types and type variables

Complication: Types now have variables. What is their
scope? When is a type variable in scope in a type?

The polymorphic type ∀A.τ binds A in τ .

We write FTV (τ) for the free type variables of a type:

FTV (A) = {A}
FTV (τ1 × τ2) = FTV (τ1) ∪ FTV (τ2)

FTV (τ1 + τ2) = FTV (τ1) ∪ FTV (τ2)

FTV (∀A.τ) = FTV (τ)− {A}
FTV (τ) = ∅ otherwise

FTV (x1:τ1, . . . , xn:τn) = FTV (τ1) ∪ · · · ∪ FTV (τn)

Alpha-equivalence and type substitution are defined
similarly to expressions.

Parametric Polymorphism Type inference

Formalization: Typechecking polymorphic

expressions

Γ ⊢ e : τ

Γ ⊢ e : τ A /∈ FTV (Γ)

Γ ⊢ ΛA. e : ∀A. τ
Γ ⊢ e : ∀A. τ

Γ ⊢ e[τ0] : τ [τ0/A]

Idea: ΛA. e must typecheck with parameter A not already
used elsewhere in type context

e[τ0] applies a polymorphic expression to a type. Result
type obtained by substituting for A.

The other rules are unchanged

Parametric Polymorphism Type inference

Formalization: Semantics of polymorphic

expressions

To model evaluation, we add type abstraction as a
possible value form:

v ::= · · · | ΛA.e

with rules similar to those for λ and application:

e ⇓ v for LPoly

e ⇓ ΛA. e0 e0[τ/A] ⇓ v

e[τ] ⇓ v ΛA. e ⇓ ΛA. e

In LPoly, type information is irrelevant at run time.

(Other languages, including Scala, do retain some run
time type information.)

Parametric Polymorphism Type inference

Convenient notation

We can augment the syntactic sugar for function
definitions to allow type parameters:

let fun f [A](x : τ) = e in ...

This is equivalent to:

let f = ΛA. λx : τ. e in ...

In either case, a function call can be written as

f [τ](x)

Parametric Polymorphism Type inference

Examples in LPoly

Identity function

id = ΛA.λx :A. x

Swap

swap = ΛA.ΛB .λx :A× B . (snd x , fst x)

Twice

twice = ΛA. λf :A → A.λx :A. f (f (x))

For example:

swap[int][str](1, ”a”) ⇓ (”a”, 1)

twice[int](λx : 2× x)(2) ⇓ 8

Parametric Polymorphism Type inference

Examples, typechecked

x :A ⊢ x :A
⊢ λx :A. x : A → A

⊢ ΛA.λx :A.x : ∀A.A → A

⊢ swap : ∀A.∀B .A× B → B × A

⊢ swap[int] : ∀B .int× B → B × int

⊢ swap[int][str] : int× str → str× int

Parametric Polymorphism Type inference

Lists and parameterized types

In Scala (and other languages such as Haskell and ML),
type abbreviations and definitions can be parameterized.

List[_] is an example: given a type T, it constructs
another type List[T]

deftype List[A] = [Nil : unit;Cons : A× List[A]]

Such types are sometimes called type constructors

(See tutorial questions on lists)

We will revisit parameterized types when we cover
modules

Parametric Polymorphism Type inference

Other forms of polymorphism

Polymorphism refers to several related techniques for
“code reuse” or “overloading”

Subtype polymorphism: reuse based on inclusion
relations between types.
Parametric polymorphism: abstraction over type
parameters
Ad hoc polymorphism: Reuse of same name for multiple
(potentially type-dependent) implementations (e.g.
overloading + for addition on different numeric types,
string concatenation etc.)

These have some overlap

We will discuss overloading, subtyping and polymorphism
(and their interaction) in future lectures.

Parametric Polymorphism Type inference

Type inference

As seen in even small examples, specifying the type
parameters of polymorphic functions quickly becomes
tiresome

swap[int][str] map[int][str] · · ·

Idea: Can we have the benefits of (polymorphic) typing,
without the costs? (or at least: with fewer annotations)

Type inference: Given a program without full type
information (or with some missing), infer type
annotations so that the program can be typechecked.

Parametric Polymorphism Type inference

Hindley-Milner type inference

A very influential approach was developed independently
by J. Roger Hindley (in logic) and Robin Milner (in CS).

Idea: Typecheck an expression symbolically, collecting
“constraints” on the unknown type variables

If the constraints have a common solution then this
solution is a most general way to type the expression

Constraints can be solved using unification, an equation
solving technique from automated reasoning/logic
programming

If not, then the expression has a type error

Parametric Polymorphism Type inference

Hindley-Milner example [Non-examinable]

As an example, consider swap defined as follows:

⊢ λx : A.(snd x , fst x) : B

A,B are the as yet unknown types of x and swap.

A lambda abstraction creates a function: hence
B = A → A1 for some A1 such that
x :A ⊢ (snd x , fst x) : A1

A pair constructs a pair type: hence A1 = A2 × A3 where
x :A ⊢ snd x : A2 and x :A ⊢ fst x : A3

This can only be the case if x : A3×A2, i.e. A = A3×A2.

Solving the constraints: A = A3 × A2, A1 = A2 × A3 and
so B = A3 × A2 → A2 × A3

Parametric Polymorphism Type inference

Hindley-Milner example [Non-examinable]

As an example, consider swap defined as follows:

⊢ λx : A.(snd x , fst x) : B

A,B are the as yet unknown types of x and swap.

A lambda abstraction creates a function: hence
B = A → A1 for some A1 such that
x :A ⊢ (snd x , fst x) : A1

A pair constructs a pair type: hence A1 = A2 × A3 where
x :A ⊢ snd x : A2 and x :A ⊢ fst x : A3

This can only be the case if x : A3×A2, i.e. A = A3×A2.

Solving the constraints: A = A3 × A2, A1 = A2 × A3 and
so B = A3 × A2 → A2 × A3

Parametric Polymorphism Type inference

Hindley-Milner example [Non-examinable]

As an example, consider swap defined as follows:

⊢ λx : A.(snd x , fst x) : B

A,B are the as yet unknown types of x and swap.

A lambda abstraction creates a function: hence
B = A → A1 for some A1 such that
x :A ⊢ (snd x , fst x) : A1

A pair constructs a pair type: hence A1 = A2 × A3 where
x :A ⊢ snd x : A2 and x :A ⊢ fst x : A3

This can only be the case if x : A3×A2, i.e. A = A3×A2.

Solving the constraints: A = A3 × A2, A1 = A2 × A3 and
so B = A3 × A2 → A2 × A3

Parametric Polymorphism Type inference

Hindley-Milner example [Non-examinable]

As an example, consider swap defined as follows:

⊢ λx : A.(snd x , fst x) : B

A,B are the as yet unknown types of x and swap.

A lambda abstraction creates a function: hence
B = A → A1 for some A1 such that
x :A ⊢ (snd x , fst x) : A1

A pair constructs a pair type: hence A1 = A2 × A3 where
x :A ⊢ snd x : A2 and x :A ⊢ fst x : A3

This can only be the case if x : A3×A2, i.e. A = A3×A2.

Solving the constraints: A = A3 × A2, A1 = A2 × A3 and
so B = A3 × A2 → A2 × A3

Parametric Polymorphism Type inference

Hindley-Milner example [Non-examinable]

As an example, consider swap defined as follows:

⊢ λx : A.(snd x , fst x) : B

A,B are the as yet unknown types of x and swap.

A lambda abstraction creates a function: hence
B = A → A1 for some A1 such that
x :A ⊢ (snd x , fst x) : A1

A pair constructs a pair type: hence A1 = A2 × A3 where
x :A ⊢ snd x : A2 and x :A ⊢ fst x : A3

This can only be the case if x : A3×A2, i.e. A = A3×A2.

Solving the constraints: A = A3 × A2, A1 = A2 × A3 and
so B = A3 × A2 → A2 × A3

Parametric Polymorphism Type inference

Let-bound polymorphism [Non-examinable]

An important additional idea was introduced in the ML
programming language, to avoid the need to explicitly
introduce type variables and apply polymorphic functions
to type arguments

When a function is defined using let fun (or let rec),
first infer a type:

swap : A3 × A2 → A2 × A3

Then abstract over all of its free type parameters.

swap : ∀A.∀B .A× B → B × A

Finally, when a polymorphic function is applied, infer the
missing types.

swap(1, ”a”)⇝ swap[int][str](1, ”a”)

Parametric Polymorphism Type inference

ML-style inference: strengths and weaknesses

Strengths

Elegant and effective
Requires no type annotations at all

Weaknesses

Can be difficult to explain errors
In theory, can have exponential time complexity (in
practice, it runs efficiently on real programs)
Very sensitive to extension: subtyping and other
extensions to the type system tend to require giving up
some nice properties

(We are intentionally leaving out a lot of technical detail.)

Parametric Polymorphism Type inference

Type inference in Scala

Scala does not employ full HM type inference, but uses
many of the same ideas.

Type information in Scala flows from function arguments
to their results

def f[A](x: List[A]): List[(A,A)] = ...

f(List(1,2,3)) // A must be Int, don’t need f[Int]

and sequentially through statement blocks

var l = List(1,2,3); // l: List[Int] inferred

var y = f(l); // y : List[(Int,Int)] inferred

Parametric Polymorphism Type inference

Type inference in Scala

Type information does not flow across arguments in the
same argument list

def map[A,B](f: A => B, l: List[A]): List[B] = ...

scala> map({x: Int => x + 1}, List(1,2,3))

res0: List[Int] = List(2, 3, 4)

scala> map({x => x + 1}, List(1,2,3))

<console>:25: error: missing parameter type

But it can flow from earlier argument lists to later ones:

def map2[A,B](l: List[A])(f: A => B): List[B] = ...

scala> map2(List(1,2,3)) {x => x + 1}

res1: List[Int] = List(2, 3, 4)

Parametric Polymorphism Type inference

Type inference in Scala: strengths and limitations

Compared to Java, many fewer annotations needed

Compared to ML, Haskell, etc. many more annotations
needed

The reason has to do with Scala’s integration of
polymorphism and subtyping

needed for integration with Java-style object/class
system
Combining subtyping and polymorphism is tricky (type
inference can easily become undecidable)
Scala chooses to avoid global constraint-solving and
instead propagate type information locally

Parametric Polymorphism Type inference

Summary

Today we covered:

The idea of thinking of the same code as having many
different types
Parametric polymorphism: makes the type parameter
explicit and abstract
Brief coverage of type inference.

Next time:

Programs, modules, and interfaces

	Parametric Polymorphism
	Type inference

