
Elements of Programming Languages
Tutorial 5: Modules and Objects

Week 7 (October 28–November 1, 2024)

Exercises marked ⋆ are more advanced. Please try all unstarred exercises before
the tutorial meeting.

1. Typing derivations

Construct typing derivations for the following expressions, or argue why
they are not well-formed:

(a) ΛA.λx:A.x+ 1

(b) (⋆) ΛA.λx:A × A.if fst x == snd x then fst x else snd x (and how
does its well-formedness depend on the typing rule for equality?)

2. Evaluation derivations

Construct evaluation derivations for the following expressions, or explain
why they do not evaluate:

(a) (ΛA.λx:A.x+ 1)[int] 42

(b) (ΛA.λx:A.x+ 1)[bool] true

3. (⋆) Lists and polymorphism

Recall the proposed rules for lists from the previous tutorial.

e ::= · · · | nil | e1 :: e2 | caselist e of {nil ⇒ e1 ; x :: y ⇒ e2}
v ::= · · · | nil | v1 :: v2

τ ::= · · · | list[τ]

Define LList to be LPoly extended with the above constructs.

(a) Write a polymorphic function map that has this type:

∀A.∀B.(A → B) → (list[A] → list[B])

so that map(f)(l) is the function that traverses a list of A’s and, for each
element x in l, applies the function f to it.

(b) Write out a typing derivation tree for the expression

map[int][int](λx.x+ 1)(2 :: nil)

assuming that map has the type given above.

(c) Are lists and their associated operations definable in LPoly already? Why
or why not?

1

4. Modules and Interfaces in Scala

Consider the following Scala object definition.

object A {
type T = Int
val c: T = 1
val d: T = 2
def f(x: T, y:T): T = x + y

}
object B {
type T = String
val c: T = "abcd"
val d: T = "1234"
def f(x: T, y: T) = x + y

}

(a) Write expressions showing how to access each of the elements of A and
B.

(b) Suppose we execute the import statements

import A._
import B._

after finishing the declaration of A. What does unqualified identifier d
refer to after that? What if we import in the opposite order?

(c) (⋆) Construct a Scala trait ABlike defining bindings for all of the com-
ponents of A and B, and so that we can assert that both A and B extend
ABlike.

(d) (⋆) Define a function g taking an argument x: ABlike that applies f to
c and d. Apply it to both instances of ABlike above. What is its return
type?

(e) (⋆) Create an anonymous instance of ABlike with T = Boolean and
call the function g on it.

5. (⋆) Ad hoc polymorphism

Traits can also accommodate overloading and reuse of the same name for
operations on different types. An operation such as size can be defined as
part of a trait as follows:

trait HasSize { def size(): Int }

(a) Modify the definition of List[A] above so that it extends HasSize,
and define an appropriate size method for it.

(b) Modify the definition of Tree[A] so that it extends HasSize and define
its size operation.

(c) Write a function sameSize that takes two values of type HasSize and
checks whether they have the same size.

(d) Call this function on a List[Int] and a Tree[String] to verify that the
correct implementations of size are called for different types.

2

