Elements of Programming Languages
Tutorial 5: Modules and Objects
Week 7 (October 28—-November 1, 2024)

Exercises marked x are more advanced. Please try all unstarred exercises before
the tutorial meeting.
1. Typing derivations

Construct typing derivations for the following expressions, or argue why
they are not well-formed:

(@) AMA I x:Ax+1
(b) (x) AAXx:A x A.if fst x == snd x then fst x else snd x (and how
does its well-formedness depend on the typing rule for equality?)
2. Evaluation derivations
Construct evaluation derivations for the following expressions, or explain
why they do not evaluate:
(@) (AAXz:A.x+1)[int] 42
(b) (AAAz:A.x + 1)[bool] true

3. (%) Lists and polymorphism

Recall the proposed rules for lists from the previous tutorial.

e u= ---|nil|ey ::eg | caseyjsr eof {nil =e1; 11y = ea}
n= oo | nil vy vy
T u= .- |list[7]
Define L s to be Lpoy extended with the above constructs.

(a) Write a polymorphic function map that has this type:
VAVB.(A— B) — (list[A] — list[B])

so that map(f)(1) is the function that traverses a list of A’s and, for each
element z in [, applies the function f to it.

(b) Write out a typing derivation tree for the expression
map[int][int](Az.z + 1)(2 :: nil)

assuming that map has the type given above.

(c) Arelists and their associated operations definable in Lp,, already? Why
or why not?

4. Modules and Interfaces in Scala

Consider the following Scala object definition.

object A {
type T =
val c: T =1
val d: T = 2
def f(x: T, y:T): T = x +y
}

object B {
type T = String
val c: T = "abcd"
val d: T = "1234"
def f(x: T, y: T) = x + vy

}

(a) Write expressions showing how to access each of the elements of a and
B.

(b) Suppose we execute the import statements

import A._
import B._

after finishing the declaration of . What does unqualified identifier d
refer to after that? What if we import in the opposite order?

(c) (%) Construct a Scala trait aB1ike defining bindings for all of the com-
ponents of A and B, and so that we can assert that both A and B extend
ABlike.

(d) (%) Define a function g taking an argument x: ABlike thatapplies £ to
c and d. Apply it to both instances of AB1ike above. What is its return
type?

(e) (%) Create an anonymous instance of ABlike with T = Boolean and
call the function g on it.

5. () Ad hoc polymorphism

Traits can also accommodate overloading and reuse of the same name for
operations on different types. An operation such as size can be defined as
part of a trait as follows:

trait HasSize { def size(): Int }

(a) Modify the definition of List [A] above so that it extends HasSize,
and define an appropriate size method for it.

(b) Modify the definition of Tree [A] so that it extends HasSize and define
its size operation.

(c) Write a function samesize that takes two values of type HasSize and
checks whether they have the same size.

(d) Call this functionona List [Int] and a Tree [String] to verify that the
correct implementations of size are called for different types.

