
Elements of Programming Languages
Tutorial 8: References and laziness
Week 10 (November 18–22, 2024)

Exercises marked ⋆ are more advanced. Please try all unstarred exercises before
the tutorial meeting.

1. Semantics of references

(a) Give explicit small-step rules for evaluating the sequential composition
expression e1; e2. (Remember that it can also be viewed as syntactic
sugar for let x = e1 in e2 provided x is a fresh variable unused in
either expression)

(b) Evaluate the following expression to completion:

let r = ref(ref(42)) in !(!(r))

(c) Consider the following expression:

let r = ref(λx. x) in r := (λx. x+ 1); (!r)(true)

Apply small-step evaluation to this expression until it reaches either a
value or an error state.

2. Interaction of references and evaluation order

Consider the following expression e:

let r = ref(42) in (λx.print(x);print(x)) (r :=!r + 1; !r)

where print is a side-effecting operation that fully evaluates its argument
to a value and then prints it. For each of the following evaluation strategies,
explain informally how e would be evaluated and what the printed output
will be.

(a) call-by-value

(b) call-by-name

(c) call-by-need / lazy evaluation

3. Embedding LWhile in Scala

Recall the statements of LWhile:

Stmt ∋ s ::= skip | s1; s2 | x := e | if e then s1 else s2 | while e do s

In this exercise, we will show how to embed these statements into Scala,
viewing LWhile’s variables as references using the Ref[T] type discussed in
class:

1

class Ref[A](val x: A) {
private var a = x
def get = a
def set(y: A) = { a = y }

}

Statements in LWhile will correspond to expressions of type Unit in Scala, and
variables will correspond to instances of the Ref[T] type. Consider the fol-
lowing interface:

val skip : ()
def seq(s1: => Unit,s2: => Unit): Unit
def assign[T](x: Ref[T], e: => T): Unit
def Ifthenelse(e: => Boolean, s1: => Unit, s2: => Unit): Unit
def whiledo(e: => Boolean, s: => Unit): Unit

Notice in particular that most arguments are passed by name (that is, their
types are of the form => T).

(a) Implement the above operations.

(b) Why do the statements and expressions in assign, ifthenelse, and
whiledo need to be passed by name? What would happen if they were
passed by value?

(c) (⋆) We have not considered how to map LWhile expressions to LRef . In
LWhile, a mutable variable occurring in an expression is evaluated to its
value. How should we adjust such expressions in LRef?

4. (⋆) Stream programming

Consider the following Stream type:

abstract class Stream[+A]
case object Empty extends Stream[Nothing]
case class SCons[+A](h: A, t: () => Stream[A]) extends Stream[A]

This defines a type of streams, which are similar to lists, but the evaluation of
the tail of a stream is delayed.

Define Scala functions on streams as follows:

(a) const[A]: A => Stream[A] so that const(a) produces an infinite
stream of a’s.

(b) take[A]: (Int,Stream[A]) => List[A] so that take(n,s) lists the
first n elements from s.

(c) repeat[A]: (A => A) => A => Stream[A] such that

repeat(a)(f) = Stream(a,f(a),f(f(a)),..)

For example, repeat(0) (incr) should produce the stream 0,1,2,3,...,
if incr is the increment function.

(d) map[A]: Stream[A] => (A => B) => Stream[B] that applies the func-
tion f: A => B to each element of the stream s: Stream[A] yielding a
stream of Bs.

2

