While-programs Structured control and procedures Unstructured control
000000 [e]e] 00000000000

Elements of Programming Languages

Lecture 12: Imperative programming

James Cheney
University of Edinburgh

October 30, 2025

While-programs Structured control and procedures Unstructured control
000000 [e]e] 00000000000

The story so far

So far we've mostly considered pure computations.

Once a variable is bound to a value, the value never
changes.

e that is, variables are immutable.

This is not how most programming languages treat
variables!
e In most languages, we can assign new values to
variables: that is, variables are mutable by default

Just a few languages are completely “pure” (Haskell).
Others strike a balance:

e e.g. Scala distinguishes immutable (val) variables and
mutable (var) variables
e similarly const in Java, C

While-programs Structured control and procedures Unstructured control
000000 [e]e] 00000000000

Mutable vs. immutable

@ Advantages of immutability:
o Referential transparency (substitution of equals for
equals); programs easier to reason about and optimize
e Types tell us more about what a program can/cannot do
@ Advantages of mutability:
e Some common data structures easier to implement
o Easier to translate to machine code (in a
performance-preserving way)
e Seems closely tied to popular OOP model of “objects
with hidden (mutable) state and public methods”

@ Today we'll consider programming with assignable
variables and loops (Lwnie) and then discuss procedures
and other forms of control flow

While-programs Structured control and procedures Unstructured control
@00000 (e]e] 00000000000

While-programs

@ Let's start with a simple example: Lwhnie, With statements

Stmt>s = skip|s;s|x:=e

| if e then s; else s, |while edo s

skip does nothing
s1; S» does s;, then s,
x := e evaluates e and assigns the value to x

if e then s; else s, evaluates e, and evaluates s; or s,
based on the result.

@ while e do s tests e. If true, evaluate s and loop;
otherwise stop.

We typically use {} to parenthesize statements.

Unstructured control

While-programs Structured control and procedures
00000000000

0e0000 oo

A simple example: factorial again

@ In Scala, mutable variables can be defined with var

var n =
var x = 1
while(n > 0) {
X =n *x X
n = n-1

}

@ In Lwhile, all variables are mutable

x:=1;while (n>0) do {x :=nxx;n:=n—1}

Unstructured control

While-programs Structured control and procedures
00000000000

00@000 oo

An interpreter for Lyhile

We will define a pure interpreter:

def exec(env: Env[Value], s: Stmt): Env[Value] =
s match {
case Skip => env
case Seq(sl,s2) =>
val envl = exec(env, sl)
exec(envl,s2)
case IfThenElseS(e,s1,s2) => eval(env,e) match {
case BoolV(true) => exec(env,sl)
case BoolV(false) => exec(env,s2)

3

While-programs Structured control and procedures Unstructured control
000e00 (e]e] 00000000000

An interpreter for Lyhile

def exec(env: Env[Value], s: Stmt): Env[Value] =
s match {

case WhileDo(e,s) => eval(env, e) match {
case BoolV(true) =>
val envl = exec(env,s)
exec(envl, WhileDo(e,s))
case BoolV(false) => env
}
case Assign(x,e) =>
val v = eval(env,e)
env + (x -> v)

While-programs Structured control and procedures Unstructured control
0000e0 (e]e] 00000000000

While-programs: evaluation

o,s1d o’ o, o”
o,skip || o 0,51, 4 o

o,e |l true o,s5 | o’ o,e |l false 0,5 |0

0,if e then s; else s, | 0/ 0,if e then s; else s || o’

o,e | true 0,5 ¢ o¢',while edo s o”
o,while e do s | o”

o,e || false o,elv
o,while edo s o o,x:=el o[x:=v]

@ Here, we use evaluation in context o, e | v (cf.
Assignment 2)

While-programs Structured control and procedures Unstructured control
00000e (e]e] 00000000000

Examples

e x =y+1,z:=2xx

o,y +142 02,2xx | 4
o, x =y+1lor 02,z:=2x%xx{ 03
oL, x=y+1,z:=2xx{ o3

@ where

op = [y:=1]
oy = [x:=2,y:=1]
o3 = [x:=2,y:=12z:=4]

While-programs Structured control and procedures Unstructured control
000000 o0 00000000000

Other control flow constructs

o We've taken “if" (with both “then” and “else” branches)
and “while” to be primitive

@ We can define some other operations in terms of these:

if ethens <= 1if e then s else skip
do s whilee <= s;whileedos
for(i€n...m)dos <= i:=mn
while i < mdo {
sii=i+1

@ as seen in C, Java, etc.

While-programs Structured control and procedures Unstructured control
000000 oe 00000000000

Procedures

@ Lwhile is not a realistic language.
@ Among other things, it lacks procedures
e Example (C/Java):
int fact(int n) {
int x = 1;
while(n > 0) {
X = x*n;
n =n-1;
}
return Xx;
+
@ Procedures can be added to Lwhie (much like functions in
I—Rec)
@ Rather than do this, we'll show how to combine Lwhike
with Lgec later.

While-programs Structured control and procedures Unstructured control
000000 (e]e) 00000000000

Structured vs. unstructured programming
[Non-examinable]

@ All of the languages we've seen so far are structured
e meaning, control flow is managed using if, while,
procedures, functions, etc.
@ However, low-level machine code doesn't have any of
these.
@ A machine-code program is just a sequence of
instructions in memory
@ The only control flow is branching:
e “unconditionally go to instruction at address n"
e “if some condition holds, go to instruction at address n”

@ Similarly, “goto” statements were the main form of
control flow in many early languages

While-programs Structured control and procedures Unstructured control
000000 (e]e) 0O@000000000

“GO TO" Considered Harmful [Non-examinable]

@ In a famous letter (CACM 1968), Dijkstra listed many
disadvantages of “goto” and related constructs

@ It allows you to write “spaghetti code”, where control
flow is very difficult to decipher
@ For efficiency/historical reasons, many languages include
such “unstructured” features:
e “goto” — jump to a specific program location
e ‘“switch” statements
e “break” and “continue” in loops
@ It's important to know about these features, their pitfalls
and their safe uses.

While-programs Structured control and procedures Unstructured control
000000 (e]e) 00@00000000

goto in C [Non-examinable]

@ The C (and C++) language includes goto
@ In C, goto L jumps to the statement labeled L
@ A typical (relatively sane) use of goto

. do some stuff

if (error) goto error;

. do some more stuff

if (error2) goto error;

. do some more stuff...
error: .. handle the error...

o We'll see other, better-structured ways to do this using
exceptions.

While-programs Structured control and procedures Unstructured control
000000 (e]e) 000@0000000

goto in C: pitfalls [Non-examinable]

@ The scope of the goto L statement and the target L
might be different

e for that matter, they might not even be in the same
procedure!

@ For example, what does this do:

goto L;
if (1) {

int k = fact(3);
L: printf("%d",k);
}

@ Answer: k will be some random value!

While-programs Structured control and procedures Unstructured control
000000 (e]e) 0000e000000

goto: caveats [Non-examinable]

@ goto can be used safely in C, but is best avoided unless
you have a really good reason

@ e.g. very high performance/systems code
@ Safe use: within same procedure/scope

@ Or: to jump “out” of a nested loop

While-programs Structured control and procedures Unstructured control
000000 (e]e) 00000800000

goto fail [Non-examinable]

e What's wrong with this picture?

if (error test 1)
goto fail;

if (error test 2)
goto fail;
goto fail;

if (error test 3)
goto fail;

fail: ... handle error ...

@ (In C, braces on if are optional; if they're left out, only
the first goto fail statement is conditional!)

@ This led to an Apple SSL security vulnerability in 2014
(see https://gotofail.com/)

While-programs Structured control and procedures Unstructured control
000000 (e]e) 00000080000

switch statements [Non-examinable]

@ We've seen case or match constructs in Scala
@ The switch statement in C, Java, etc. is similar:

switch (month) {
case 1: print("January"); break;
case 2: print("February"); break;

default: print("unknown month"); break;

by

@ However, typically the argument must be a base type like
int

o (but see Java 21's new pattern matching for switch
extension https://openjdk.org/jeps/441)

While-programs Structured control and procedures Unstructured control
000000 (e]e) 00000008000

switch statements: gotchas [Non-examinable]

@ See the break; statement?
@ It's an important part of the control flow!
e it says “now jump out the end of the switch statement”
month = 1;
switch (month) {
case 1: print("January");
case 2: print("February");

default: print("unknown month");
} // prints all months!

@ Can you think of a good reason why you would want to
leave out the break?

Unstructured control

While-programs Structured control and procedures
00000000800

000000 (e]e]

Break and continue [Non-examinable]

@ The break and continue statements are also allowed in
loops in C/Java family languages.
for(i = 0; i < 10; i++) {

if (i % 2 == 0) continue;
if (i == 7) break;
print(i);

by

e “Continue” says Skip the rest of this iteration of the loop.
@ "“Break” says Jump to the next statement after this loop

While-programs Structured control and procedures Unstructured control
000000 (e]e) 00000000800

Break and continue [Non-examinable]

@ The break and continue statements are also allowed in
loops in C/Java family languages.

for(i = 0; i < 10; i++) {

if (i % 2 == 0) continue;
if (i == 7) break;
print(i);

+

e “Continue” says Skip the rest of this iteration of the loop.
@ "“Break” says Jump to the next statement after this loop

@ This will print 135 and then exit the loop.

While-programs Structured control and procedures Unstructured control
000000 (e]e) 00000000080

Labeled break and continue [Non-examinable]

@ In Java, break and continue can use labels.
OUTER: for(i = 0; i < 10; i++) {
INNER: for(j = 0; j < 10; j++) {
if (j > i) continue INNER;
if (i == 4) break OUTER;
print(j);
}
+
@ This will print 0010120123 and then exit the loop.

While-programs
000000

Structured control and procedures
[e]e]

Unstructured control
00000000080

Labeled break and continue [Non-examinable]

@ In Java, break and continue can use labels.
QUTER: for(i =

0; i < 10; i++) {
INNER: for(j = 0; j < 10; j++) {

if (j > i) continue INNER;
if (i == 4) break OUTER;
print(j);

}
}
@ This will print 0010120123 and then exit the loop.

o (Labeled) break and continue accommodate some of the
safe uses of goto without as many sharp edges

While-programs Structured control and procedures Unstructured control
000000 (e]e) 0000000000e

Summary

@ Many real-world programming languages have:
© mutable state
@ structured control flow (if/then, while, exceptions)
© procedures
@ We've showed how to model and interpret Lwpile, @ simple
imperative language
@ and discussed a variety of (unstructured) control flow
structures, such as “goto”, “switch” and
“break/continue”.
o Next time:
e Small-step semantics and type soundness

	While-programs
	Structured control and procedures
	Unstructured control

