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Overview

@ Last time:
o Concrete vs. abstract syntax
e Programming with abstract syntax trees
e A taste of induction over expressions
e Today:
e Evaluation

e A simple interpreter
e Modeling evaluation using rules
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Values

@ Recall Laitn expressions:
Expr>ei=e +e|exe|neN

@ Some expressions, like 1,2,3, are special

e They have no remaining “computation” to do
o We call such expressions values.

@ We can define a BNF grammar rule for values:

Value> vi:=neN
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Evaluation, informally

@ Given an expression e, what is its value?
e If e = n, a number, then it is already a value.
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Evaluation, informally

@ Given an expression e, what is its value?
e If e = n, a number, then it is already a value.
o If e =¢e; + &, evaluate e1 to v; and e to v». Then add
vi1 and vp, the result is the value of e.
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Evaluation, informally

@ Given an expression e, what is its value?
e If e = n, a number, then it is already a value.
o If e = ¢e1 + e, evaluate e; to v1 and e to v». Then add
vi1 and vp, the result is the value of e.
o If e =¢e; X &, evaluate e; to v; and e to v». Then
multiply vi and v», the result is the value of e.
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Evaluation, in Scala

e If e = n, a number, then it is already a value.

o If e = e + &, evaluate ¢; to v; and e, to v». Then add
v; and v, the result is the value of e.

o If e = ¢ X &, evaluate ¢; to v; and e, to v». Then
multiply v; and v, the result is the value of e.

def eval(e: Expr): Int = e match {
case Num(n) => n
case Plus(el,e2) => eval(el) + eval(e2)
case Times(el,e2) => eval(el) * eval(e2)

¥




Example

eval ./ x eval(l)—l—eval( / \
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Example

eval(1)+-eval = eval(1)+(eval(2)xeval(3))

eval(1) + (eval(2) x eval(3)) =1+ (2x3)=1+6=7
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Expression evaluation, more formally

@ To specify and reason about evaluation, we use a
evaluation judgment.

Definition (Evaluation judgment)

Given expression e and value v, we say v is the value of e if
evaluating e results in v, and we write e |} v to indicate this.

@ (A judgment is a relation between abstract syntax trees.)

e Examples:

1+203 1+2x3]7 (1+2)x349
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Evaluation of Values

@ A value is already evaluated. So, for any v, we have
viv.

@ We can express the fact that v |} v always holds (for any
v) as follows:

viv
@ This is a rule that says that v evaluates to v always (no
preconditions)
@ So, for example, we can derive:

040 101
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Evaluation of Addition

@ How to evaluate expression e; + e,?
@ Suppose we know that e; |} v; and e |} .

@ Then the value of e; + &, is the number we get by adding
numbers v; and v,.

@ We can express this as follows:

erllvi elw
er+e v +yw

@ This is a rule that says that e; + e, evaluates to v; +n v»
provided e; evaluates to v; and e, evaluates to v,

@ Note that we write +y for the mathematical function

that adds two numbers, to avoid confusion with the
abstract syntax tree vi + .
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Expression evaluation: Summary

@ Multiplication can be handled exactly like addition.

@ We will define the meaning of Laitn expressions using the
following rules:

egldvi elw eellvi elw
viv e+ellvtyw e X e vi Xy w

@ This evaluation judgment is an example of big-step
semantics (or natural semantics)
e so-called because we evaluate the whole expression “in
one step”
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Examples

@ We can use these rules to derive evaluation judgments for
complex expressions:

202 303 141 202
101 202 101 2%306 1+203 313
14243 1+(2%3) 47 (1+2)%309

@ These figures are derivation trees showing how we can
derive a conclusion from axioms
@ The rules govern how we can construct derivation trees.
o A leaf node must match a rule with no preconditions
e Other nodes must match rules with preconditions.
o Order matters.
e Note that derivation trees “grow up” (root is at the
bottom)
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Totality and Structural induction

@ Question: Given any expression e, does it evaluate to a
value?
@ To answer this question, we can use structural induction:

Induction on structure of expressions

Given a property P of expressions, if:
e P(n) holds for every number n € N

e for any expressions ey, e, if P(e1) and P(e2) holds then
P(e1 + &) also holds

e for any expressions ey, e, if P(e1) and P(ey) holds then
P(e1 X ep) also holds

Then P(e) holds for all expressions e.
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Proof by structural induction

@ Let's illustrate with an example

If e is an expression, then there exists v € N such that e || v
holds.

Proof: Base case.

If e = n then e is already a value. Take v = n, then we can
derive

el n
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Proof by structural induction

Proof: Inductive case 1.

If e = e; + e then suppose e; || v; and e, |} v, for some
vi, V». Then we can use the rule:

v elwn
ett+ellvityw

to conclude that there exists v = v; +y v such that e |} v
holds.

O

W
Note that again it's important to distinguish vy + v, (the
number) from v; + v, the expression.
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Proof by structural induction

Proof: Inductive case 2.
If e = e; X e then suppose e; |} v; and & |} v, for some
vi, V». Then we can use the rule:

v elw
er X el viXyw

to conclude that there exists v = v; Xy v» such that e || v
holds. my

@ This case is basically identical to case 1 (modulo + vs.
X).

@ From now on we will typically skip over such “essentially
identical” cases (but it is important to really check them).
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Uniqueness

We can also prove the uniqueness of the result value of the
expression by induction:

Theorem (Uniqueness of evaluation)
Ifel vandel vV, thenv =V

Base case.

If e = n then since nl} v and n || v’ hold, the only way we
could derive these judgments is for v, v’ to both equal n. [
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Uniqueness

Inductive case.
If e = e; + e then the derivations must be of the form

aldv elw allvi elv
et t+evitnwv ee+elvitnv

By induction, e; || vy and e; |} v; implies v; = v, and similarly
for e; so v = vj. Therefore v; +y vo = v{ +n V5. O

v

@ The proof for e; X e, is similar.
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Totality, uniqueness, and correctness

@ The Scala interpreter code defined earlier says how to
interpret a Lasiwn €xpression as a function

@ The big-step rules, in contrast, specify the meaning of
expressions as a relation.

@ Nevertheless, totality and uniqueness guarantee that for
each e there is a unique v such that e |} v

o In fact, v = eval(e), that is:

Theorem (Interpreter Correctness)

For any La.iwn expression e, we have e |} v if and only if
v = eval(e).

@ Proof: induction on e.
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Summary

@ In this lecture, we've covered:

e A simple interpreter

e Evaluation via rules

o Totality and uniqueness (via structural induction)
@ all for the simple language Layith
@ Next time:

e Booleans, equality, conditionals
o Types
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