Booleans and Conditionals Types
000000000 0000000000000

Elements of Programming Languages

Lecture 3: Booleans, conditionals, and types

James Cheney
University of Edinburgh

September 25, 2025

Booleans and Conditionals Types
©00000000 0000000000000

Boolean expressions

@ So far we've considered only a trivial arithmetic language
L Arith

@ Let's extend L, with equality tests and Boolean
true/false values:

@ We write B for the set of Boolean values {true, false}

@ Basic idea: e; == e, should evaluate to true if ¢; and &
have equal values, false otherwise

Booleans and Conditionals Types
000000000 0000000000000

What use is this?

Examples:

o 2+ 2 == 4 should evaluate to true

@ 3x344x4==05 x5 should evaluate to true
@ 3 X 3 ==14 x7 should evaluate to false

e How about true == true? Or false == true?

So far, there's not much we can do.

We can evaluate a numerical expression for its value, or a
Boolean equality expression to true or false

@ We can’t write an expression whose result depends on
evaluating a comparison.

o We lack an “if then else” (conditional) operation.

We also can’t “and”, “or” or negate Boolean values.

Booleans and Conditionals Types
000000000 0000000000000

Conditionals

@ Let's also add an “if then else” operation:
ex=---|beB|e ==e |if e then ¢ else &

@ We define Lj as the extension of La with booleans,
equality and conditionals.
e Examples:
o if true then 1 else 2 should evaluate to 1
e if 1 +1 == 2 then 3 else 4 should evaluate to 3

e if true then false else true should evaluate to
false

@ Note that if e then e; else e is the first expression
that makes nontrivial “choices”: whether to evaluate the
first or second case.

Booleans and Conditionals Types
000@00000 0000000000000

Extending evaluation

@ We consider the Boolean values true and false to be
values:

vi=neN|beB

@ and we add the following evaluation rules:

eedv elv alvi elw i w
e1 == 6 |} true e, == e |} false
el true el wn el false el w

if e then e else & || v if e then e; else & | »»

v

Booleans and Conditionals Types
000000000 0000000000000

Extending the interpreter

@ To interpret L, we need new expression forms:

case class Bool(n: Boolean) extends Expr

case class Eq(el: Expr, e2:Expr) extends Expr

case class IfThenElse(e: Expr, el: Expr, e2: Expr)
extends Expr

e and different types of values (not just Ints):

abstract class Value
case class NumV(n: Int) extends Value
case class BoolV(b: Boolean) extends Value

@ (Technically, we could encode booleans as integers, but in
general we will want to separate out the kinds of values.)

Booleans and Conditionals Types
000008000 0000000000000

Extending the interpreter

// helpers
def add(vl: Value, v2: Value): Value =
(v1,v2) match {
case (NumV(v1), NumV(v2)) => NumV (v1 + v2)
}
def mult(vl: Value, v2: Value): Value = ...
def eval(e: Expr): Value = e match {
// Arithmetic
case Num(n) => NumV(n)
case Plus(el,e2) => add(eval(el),eval(e2))
case Times(el,e2) => mult(eval(el),eval(e2))

.}

Booleans and Conditionals Types
000000000 0000000000000

Extending the interpreter

// helper

def eq(vl: Value, v2: Value): Value = (v1,v2) match {
case (NumV(nl1), NumV(n2)) => BoolV(nl == n2)
case (BoolV(b1l), BoolV(b2)) => BoolV(bl == b2)

}

def eval(e: Expr): Value = e match {

case Bool(b) => BoolV(b)
case Eq(el,e2) => eq (eval(el), eval(e2))
case IfThenElse(e,el,e2) => eval(e) match {
case BoolV(true) => eval(el)
case BoolV(false) => eval(e2)
}
}

Booleans and Conditionals Types
000000000 0000000000000

Aside: Other Boolean operations

@ We can add Boolean and, or and not operations as
follows:
eZZ:"'|€1/\62|61\/62|—|(e)

@ with evaluation rules:

eldvi elw agldvi elwv

el/\ezl}vl/\BVQ e1\/e2i}v1\/13v2

@ where again, Ag and Vg are the mathematical “and” and
“or" operations

@ These are definable in Ly, so we will leave them out to
avoid clutter.

Booleans and Conditionals Types
000000000 0000000000000

Aside: Shortcut operations

e Many languages (e.g. C, Java) offer shortcut versions of
“and” and “or":

ex=--|e&&el|e |l e

@ e && e; stops early if e is false (since e's value then
doesn’t matter).

@ ¢ || e stops early if e is true (since &'s value then
doesn’t matter).

@ We can model their semantics using rules like this:

e || false e true e | w
€1 && (59 »U/ false €1 && (S0} U/ Vo
e || true e || false e | w

e |l e true eallelw

Booleans and Conditionals Types
000000000 ©000000000000

What else can we do?

@ We can also do strange things like this:
ee=1+(2==3)

@ Or this:
e, = if 1 then 2 else 3

What should these expressions evaluate to?
@ Thereis no v such that e; |} v or e, |} v!
o the Totality property for Lasitn fails, for Lys!

@ If we try to run the interpreter: we just get an error

Booleans and Conditionals Types
000000000 0®00000000000

One answer: Conversions

@ In some languages (notably C, Java), there are built-in
conversion rules

e For example, “if an integer is needed and a boolean is
available, convert true to 1 and false to 0"

o Likewise, “if a boolean is needed and an integer is
available, convert 0 to false and other values to true”

o LISP family languages have a similar convention: if we
need a Boolean value, nil stands for “false” and any
other value is treated as “true”

@ Conversion rules are convenient but can make programs
less predictable

e We will avoid them for now, but consider principled ways
of providing this convenience later on.

Booleans and Conditionals Types
000000000 0080000000000

Another answer: Types

@ Should programs like:
1+ (2==23) if 1 then 2 else 3

even be allowed?

@ ldea: use a type system to define a subset of
“well-formed” programs

@ Well-formed means (at least) that at run time:

e arguments to arithmetic operations (and equality tests)
should be numeric values
e arguments to conditional tests should be Boolean values

Booleans and Conditionals Types
000000000 000000000000

Typing rules, informally: arithmetic

@ Consider an expression e

e If e = n, then e has type “integer”

o If e = €1 + e, then e; and e must have type “integer”.
If so, e has type "“integer” also, else error.

o If e = €1 X e, then e; and e must have type “integer”.
If so, e has type "“integer” also, else error.

Booleans and Conditionals Types
000000000 0000800000000

Typing rules, informally: booleans, equality and
conditionals

@ Consider an expression e
o If e = true or false, then e has type “boolean”
o If e = e1 == &5, then €1 and e must have the same
type. If so, e has type “boolean”, else error.
o If e=1if ey then e; else ey, then ey must have type
“boolean”, and e; and e; must have the same type. If
so, then e has the same type as e; and ey, else error.

@ Note 1: Equality arguments have the same (unknown)
type.

@ Note 2: Conditional branches have the same (unknown)
type. This type determines the type of the whole
conditional expression.

Booleans and Conditionals Types
000000000 00000@0000000

Concise notation for typing rules

@ We can define the possible types using a BNF grammar,
as follows:
Type > 7 := int | bool
For now, we will consider only two possible types,
“integer” (int) and “boolean” (bool).
@ We can also use rules to describe the types of expressions:

Definition (Typing judgment e : 7)

We use the notation - e : 7 to say that e is a well-formed
term of type 7 (or “e has type 7).

Booleans and Conditionals Types
000000000 0000008000000

Typing rules, more formally: arithmetic

e If e = n, then e has type “integer”

o If e =¢e; + e, then e; and e, must have type “integer”.
If so, e has type “integer” also, else error.

o If e =e; X e, then e; and e, must have type “integer”.
If so, e has type “integer” also, else error.

for Lavith

neN Fe :int F e :int

Fn:int Fe +e:int

Fe :int F e :int
Fe X e :int

Booleans and Conditionals Types
000000000 0000000@00000

Typing rules, more formally: equality and
conditionals

for Lis

F b :bool F e == e : bool

beB Fe:7 Fe: T

Fe:bool Fe:7 Fe:T
if e then e else & : T

@ We indicate that the types of subexpressions of == must
be equal by using the same 7
@ Similarly, we indicate that the result of a conditional has

the same type as the two branches using the same 7 for
all three

Booleans and Conditionals Types
000000000 0000000080000

Typing judgments: examples

F1l:int F2:int
F14+2:int F4:int
F1+2==4:bool

F142==4:bool F42:int F 17:int
Fif 14+ 2 ==4 then 42 else 17 : int

Fif14+2==4 then 42 else 17 : int F 100 : int
F (if 14+ 2 == 4 then 42 else 17) + 100 : int

Booleans and Conditionals
000000000

Typing judgments: non-examples

But we also want some things not to typecheck:

F1l==true:r

Fif 42 then ¢ else e : T

These judgments do not hold for any e;, e, .

Types
0000000008000

Booleans and Conditionals Types
000000000 0000000000800

Fundamental property of typing

@ The point of the typing judgment is to ensure soundness:
if an expression is well-typed, then it evaluates “correctly”

@ That is, evaluation is well-behaved on well-typed
programs.
Theorem (Type soundness for L)
If-e:7thene | vandtv:r.

e For a language like Lj¢, soundness is fairly easy to prove
by induction on expressions. We'll present soundness for
more realistic languages in detail later.

Booleans and Conditionals Types
000000000 0000000000080

Static vs. dynamic typing

@ Some languages proudly advertise that they are “static”
or “dynamic”
e Static typing:
e not all expressions are well-formed; some sensible
programs are not allowed
e types can be used to catch errors, improve performance
e Dynamic typing:
o all expressions are well-formed; any program can be run
e type errors arise dynamically; higher overhead for
tagging and checking
@ These are rarely-realized extremes: most “statically”
typed languages handle some errors dynamically

@ In contrast, any “dynamically” typed language can be
thought of as a statically typed one with just one type.

Booleans and Conditionals Types
000000000 000000000000 e

Summary

@ In this lecture we covered:
e Boolean values, equality tests and conditionals
e Extending the interpreter to handle them
e Typing rules

@ Next time:

e Variables and let-binding
e Substitution, environments and type contexts

	Booleans and Conditionals
	Types

