Variables and Substitution Scope and Binding Evaluation and types
0000 000000000 0000000000

Elements of Programming Languages

Lecture 4: Variables, substitution, and scope

James Cheney
University of Edinburgh

September 29, 2025

Variables and Substitution Scope and Binding Evaluation and types
@000 000000000 0000000000

Variables

@ A variable is a symbol that can ‘stand for' a value.
o Often written x,y, 2z,

@ Let's extend L with variables:

= neNl|e+el|e xe
| beB|e ==e |if e then e else &
| x¢€ Var

e

@ Here, x is shorthand for an arbitrary variable in Var, the
set of expression variables

@ Let's call this language Lya,

Variables and Substitution Scope and Binding Evaluation and types
[e] Iele) 000000000 0000000000

Aside: Operators, operators everywhere

We have now considered several binary operators
+ X AV =

@ as well as a unary one (—)

@ It is tiresome to write their syntax, evaluation rules, and
typing rules explicitly, every time we add to the language

@ We will sometimes represent such operations using
schematic syntax e; @ e, and rules:

ellvi ealw Fe:mm Fe:m & XmH—T
eth el vidywm Fe®e:T

@ where @ : 7y X 7 — T means that operator & takes
arguments 71, 7» and yields result of type 7

(e.g. + :int X int — int, ==:7 X 7 — bool)

Variables and Substitution Scope and Binding Evaluation and types
ooeo 000000000 0000000000

Substitution

@ We said “A variable can ‘stand for’ a value.”
@ What does this mean precisely?
@ Suppose we have x + 1 and we want x to “stand for” 42.

@ We should be able to replace x everywhere in x + 1 with
42:
x+1~~42+4+1

@ Similarly, if x “stands for” 3 then

if x ==y then x else y ~» if 3 ==y then 3 else y

Variables and Substitution Scope and Binding Evaluation and types
oooe 000000000 0000000000

Substitution

@ Let's introduce a notation for this substitution operation:

Definition (Substitution)

Given e, x, v, the substitution of v for x in e is an expression
written e[v/x].

@ For Ly,,, define substitution as follows:

wlv/x] = w
x[v/x] = v
ylv/x] =y (x#vy)
(@@e)v/ = alv/xoelv/
(if e then e else &)[v/x] = if e[v/x| then e[v/x]

else e[v/x]

Variables and Substitution Scope and Binding Evaluation and types

0000 900000000 0000000000
Scope
@ As we all know from programming, we can reuse variable
names:
def foo(x: Int) = x + 1
def bar(x: Int) = x * x

@ The occurrences of x in foo have nothing to do with
those in bar

@ Moreover the following code is equivalent (since y is not
already in use in foo or bar):

def foo(x: Int) =x + 1
def bar(y: Int) =y *x y

Variables and Substitution Scope and Binding Evaluation and types
0000 0@0000000 0000000000

Scope

Definition (Scope)

The scope of a variable name is the collection of program
locations in which occurrences of the variable refer to the
same thing.

@ | am being a little casual here: “refer to the same thing”
doesn’t necessarily mean that the two variable
occurrences evaluate to the same value at run time.

@ For example, the variables could refer to a shared
reference cell whose value changes over time.

@ In that case, the “same thing" they refer to is the
reference cell, not the value in it.

Variables and Substitution Scope and Binding Evaluation and types
0000 00@000000 0000000000

Scope, Binding and Bound Variables

@ Certain occurrences of variables are called binding

@ Again, consider

def foo(x: Int)
def bar(y: Int)

x + 1
y*y

@ The occurrences of x and y on the left-hand side of the
definitions are binding

@ Binding occurrences define scopes: the occurrences of x
and y on the right-hand side are bound

@ Any variables not in scope of a binder are called free

@ Key idea: Renaming all binding and bound occurrences in

a scope consistently (avoiding name clashes) should not
affect meaning

Variables and Substitution Scope and Binding Evaluation and types
0000 000@00000 0000000000

Simple scope: let-binding

@ For now, we consider a very basic form of scope:
let-binding.

ex=--|x|let x=¢ in &

@ We define L« to be Ljs extended with variables and let.

@ In an expression of the form let x = e; in e, we say
that x is bound in e

@ Intuition: let-binding allows us to use a variable x as an
abbreviation for (the value of) some other expression:

let x=14+2indXxx~let x=3in4 xx~4x%x3

Variables and Substitution Scope and Binding Evaluation and types
0000 0000@0000 0000000000

Equivalence up to consistent renaming

@ We wish to consider expressions equivalent (written
e; = e) if they have the same binding structure

@ We can rename bound names to get equivalent
expressions:

let x=y+zinx==w=letu=y+zinu==w
@ But some renamings change the binding structure:
letx=y+zinx==w#letw=y+zinw==w

@ Intuition: Renaming to u is fine, because u is not already
“in use”.

@ But renaming to w changes the binding structure, since
w was already “in use”.

Variables and Substitution Scope and Binding Evaluation and types
0000 000008000 0000000000

Free variables

@ The set of free variables of an expression is defined as:
FV(n) = 0
FV(x) = {x}
FV(e1 &) = FV(e)UFV(e)
FV(if e then e, else &) = FV(e)UFV(e;) UFV(e)
FV(let x =€ in &) = FV(e)U(FV(e)—{x})
where X — Y is the set of elements of X that are not in Y

{X,y,Z} - {)/} = {sz}
@ (Recall that e; @ e, is shorthand for several cases.)
@ Examples:
FV(x+y)={x,y} FV(let x =y in x) = {y}
FV(let x =x+y in z) = {x,y,z}

Variables and Substitution Scope and Binding Evaluation and types
0000 000000800 0000000000

Renaming

@ We will also use the following swapping operation to
rename variables:

y ifx=z
x(y+z) = z ifx=y
x otherwise
viy<rz) = v
(a®e)(yerz) = ealyerz)®e(yez)
(if e then e else &)(y«rz) = if e(y<>z) then e;(y+>z)
else ex(y+>z)
(let x = e in &)(y+rz) = let x(y+z) =e(y+2)
in ex(y«>z)

e Example:

(let x=y inx+ z)(x>z) =let z=y in z+ x

Variables and Substitution Scope and Binding Evaluation and types
0000 000000000 0000000000

Alpha-conversion

@ We can now define “consistent renaming” .

@ Suppose y ¢ FV/(e;). Then we can rename a
let-expression as follows:

let x = ¢ in e; ~», let y = ¢ in e(x<>y)

@ This is called alpha-conversion.

@ Two expressions are alpha-equivalent if we can convert
one to the other using alpha-conversions.

Variables and Substitution Scope and Binding Evaluation and types
0000 00000000e 0000000000

Examples
@ Examples:
let x=y+zinx==w
s let u=y+zin (x == w)(xu)
= let u=y+zin x(x>u) == w(x>u)
= letu=y+zinu==w

since u ¢ FV(x == w).
e But

letx=y+4zinx==w »,letw=y+zinw==w

because w already appears in x == w.

Variables and Substitution Scope and Binding Evaluation and types
0000 000000000 @000000000

Evaluation for 1et and variables

@ One approach: whenever we see let x = e; in e,

@ evaluate e to v»y
@ replace x with v; in e and evaluate that

for Liet

e1 v 6‘2[V1/X] J v
let x=¢ in e | v

o Note: We always substitute values for variables, and do
not need a rule for “evaluating” a variable

@ This evaluation strategy is called eager, strict, or (for
historical reasons) call-by-value

@ This is a design choice. We will revisit this choice (and
consider alternatives) later.

Variables and Substitution Scope and Binding Evaluation and types
0000 000000000 0@00000000

Substitution-based interpreter

type Variable = String

case class Var(x: Variable) extends Expr
case class Let(x: Variable, el: Expr, e2: Expr)
extends Expr

def eval(e: Expr): Value = e match {

case Let(x,el,e2) => {
val v = eval(el);
val e2vx = subst(e2,v,x);
eval (e2vx)

}

@ Note: No case for Var(x).

Variables and Substitution Scope and Binding Evaluation and types
0000 000000000 00@0000000

Types and variables

@ Once we add variables to our language, how does that
affect typing?

e Consider
let x =¢€; in &
When is this well-formed? What type does it have?
@ Consider a variable on its own: what type does it have?

o Different occurrences of the same variable in
different scopes could have different types.

@ We need a way to keep track of the types of variables

Variables and Substitution Scope and Binding Evaluation and types
0000 000000000 000e000000

Types for variables and let, informally

@ Suppose we have a way of keeping track of the types of
variables (say, some kind of map or table)

@ When we see a variable x, look up its type in the map.
@ When we see a let x = ¢; in e, find out the type of e;.
Suppose that type is 71. Add the information that x has

type 7; to the map, and check e, using the augmented
map.

@ Note: The local information about x's type should not
persist beyond typechecking its scope e;.

Variables and Substitution Scope and Binding Evaluation and types
0000 000000000 0000800000

Types for variables and let, informally

e For example:
let x=1inx+1

is well-formed: we know that x must be an int since it is
set equal to 1, and then x + 1 is well-formed because x is
an int and 1 is an int.

@ On the other hand,
let x =1 in if x then 42 else 17

is not well-formed: we again know that x must be an int
while checking if x then 42 else 17, but then when we
check that the conditional’s test x is a bool, we find that
it is actually an int.

Variables and Substitution Scope and Binding Evaluation and types
0000 000000000 00000e0000

Type Environments

@ We write I to denote a type environment, or a finite map
from variable names to types, often written as follows:

[=Xy i Ty, , Xy T

@ In Scala, we can use the built-in type
ListMap [Variable, Type] for this.
e hey, maybe that’s why the Lab has all that stuff about
ListMaps!
@ Moreover, we write I'(x) for the type of x according to I’
and [, x : 7 to indicate extending [with the mapping x
to 7.

Variables and Substitution Scope and Binding Evaluation and types
0000 000000000 0000008000

Types for variables and let, formally

@ We now generalize the ideas of well-formedness:

Definition (Well-formedness in a context)

We write [= e : 7 to indicate that e is well-formed at type 7
(or just “has type 7") in context I'.

@ The rules for variables and let-binding are as follows:

for Lie:

Mx)=r1 Nle:m Mx:mbe:n

lEx:7 [Flet x=¢ in & : 7™

Variables and Substitution Scope and Binding Evaluation and types
0000 000000000 0000000800

Types for variables and let, formally

@ We also need to generalize the L rules to allow contexts:

for Ly

FTFe:mm ThHEe:m &g XmH—T

Fn:int e De T
[Fe:bool ThHe:7 ThHe:T
[b:bool [+ if e then ¢; else & : T

@ This is straightforward: we just add I everywhere.

@ The previous rules are special cases where I is empty.

Variables and Substitution Scope and Binding Evaluation and types
0000 000000000 0000000080

Examples, revisited

We can now typecheck as follows:

X :intkF x:int x:inthF 1:int
F1:int x:intF x4+ 1:int
Flet x=1in x+1:int

On the other hand:

X :int F x : bool
F1:int x:inthk if x then 42 else 17 :77
Flet x=1in if x then 42 else 17 :7?

is not derivable because the judgment x : int - x : bool isn't.

Variables and Substitution Scope and Binding Evaluation and types
0000 000000000 000000000

Summary

@ Today we've covered:
e Variables that can be substituted with values
e Scope and binding, alpha-equivalence
o Let-binding and how it affects typing and evaluation
Next time:
e Functions and function types
e Recursion

	Variables and Substitution
	Scope and Binding
	Evaluation and types

