Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
0000000 000 000000000000

Elements of Programming Languages

Lecture 7: Records, variants, and subtyping

James Cheney
University of Edinburgh

October 13, 2025

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
0000000 000 000000000000

Overview

@ Last time:
o Simple data structures: pairing (product types), choice
(sum types)
e Today:
o Records (generalizing products), variants (generalizing
sums) and pattern matching
e Subtyping

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
9000000 000 000000000000

Records

@ Records generalize pairs to n-tuples with named fields.

e i= - |(h=e,....lh=1ey el
= "'|</1:V1,...,/n:Vn
T ou= | (T, i Th)
@ Examples:

(fst=1,snd="forty-two").snd — "forty-two"
(x=3.0, y=4.0, length=5.0)

@ Record fields can be (first-class) functions too:

(x=3.0,y=4.0, length=\(x, y). sqrt(x * x + y * y))

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
0@00000 000 000000000000

Named variants

@ As mentioned earlier, named variants generalize binary
variants just as records generalize pairs

e u= ---|C(e)]|case eof {Gi(x)=e;...}
v = | G(v)
T = | [G Ty, Gl

@ Basic idea: allow a choice of n cases, each with a name

@ To construct a named variant, use the constructor name
on a value of the appropriate type, e.g. Ci(e;) where
€ T

@ The case construct generalizes to named variants also

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
00@0000 000 000000000000

Named variants in Scala: case classes

@ We have already seen (and used) Scala's case class
mechanism

abstract class IntList

case class Nil() extends IntList

case class Cons(head: Int, tail: IntList)
extends IntlList

@ Note: IntList, Nil, Cons are newly defined types,
different from any others.
@ Case classes support pattern matching

def foo(x: IntList) = x match {
case Nil() =>
case Cons(head,tail) => ...

}

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
000e000 000 000000000000

Aside: Records and Variants in Haskell

@ In Haskell, data defines a recursive, named variant type
data IntList = Nil | Cons Int IntList
@ and cases can define named fields:
data Point = Point {x :: Double, y :: Double}
@ In both cases the newly defined type is different from any

other type seen so far, and the named constructor(s) can
be used in pattern matching
@ This approach dates to the ML programming language
(Milner et al.) and earlier designs such as HOPE (Burstall
et al.).
o (Both developed in Edinburgh)

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
0000e00 000 000000000000

Pattern matching

@ Datatypes and case classes support pattern matching
e We have seen a simple form of pattern matching for sum

types.

e This generalizes to named variants

o But still is very limited: we only consider one “level” at
a time

e Patterns typically also include constants and pairs/records

x match { case (1, (true, "abcd")) => ...}

e Patterns in Scala, Haskell, ML can also be nested: that
is, they can match more than one constructor

x match { case Cons(1,Cons(y,Nil())) => ...}

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
0000080 000 000000000000

More pattern matching

@ Variables cannot be repeated, instead, explicit equality
tests need to be used.

@ The special pattern _ matches anything
@ Patterns can overlap, and usually they are tried in order

result match {
case OK => println("All is well")
case _ => println("Release the_ hounds!")
}
// mot the same as
result match {
case _ => println("Release jthe hounds!")

case 0K => println("All,,is well")
}

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
000000e 000 000000000000

Expanding nested pattern matching

@ Nested pattern matching can be expanded out:

1 match {
case Cons(x,Cons(y,Nil())) => ...

3

expands to

1 match {
case Cons(x,tl1l) => t1 match {
case Cons(y,t2) => t2 match {
case Nil() => ...

} i}

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
0000000 @00 000000000000

Type abbreviations

@ Obviously, it quickly becomes painful to write
"(x :int,y : str)" over and over.

e Type abbreviations introduce a name for a type.
type T =7

An abbreviation name T treated the same as its
expansion T
o (much like let-bound variables)

@ Examples:

type Point = (x:dbl, y:dbl)

type Point3d = (x:dbl, y:dbl, z:dbl)

type Color = (r:int, g:int, b:int)

type ColoredPoint = (x:dbl, y:dbl, c:Color)

Records, Variants, and Pattern Matching Type abbreviations and definitions

Subtyping
0000000 oeo

000000000000

Type definitions

@ Instead, can also consider defining new (named) types
deftype T =71

@ The term generative is sometimes used to refer to
definitions that create a new entity rather than
introducing an abbreviation

@ Type abbreviations are usually not allowed to be
recursive; recursive type definitions are often allowed.

deftype IntList = [Nil : unit, Cons : int X IntList]

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
0000000 ooe 000000000000

Type definitions vs. abbreviations in practice

@ In Haskell, type abbreviations are introduced by type,
while new types can be defined by data or newtype
declarations.

@ In Java, there is no explicit notation for type
abbreviations; the only way to define a new type is to
define a class or interface

@ In Scala, type abbreviations are introduced by type, while
the class, object and trait constructs define new
types

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
0000000 e]ele} ©00000000000

Subtyping

@ Suppose we have a function:
dist = \p:Point. sqrt((p.x)*> + (p.y)?)

for computing the distance to the origin.

@ Only the x and y fields are needed for this, so we'd like to
be able to use this on ColoredPoints also.

@ But, this doesn't typecheck (even though it would
evaluate correctly):

dist({x=8.0, y=12.0, c=purple)) = 13.0

@ We can introduce a subtyping relationship between Point
and ColoredPoint to allow for this.

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
0000000 e]ele} 080000000000

Subtyping

o Liskov (Turing award 2008) proposed a guideline for
subtyping:

Liskov Substitution Principle

If S is a subtype of T, then objects of type T may be replaced
with objects of type S without altering any of the desirable
properties of the program.

o If we use 7 <: 7/ to mean “7 is a subtype of 7", and
consider well-typedness to be desirable, then we can
translate this to the following subsumption rule:

Fl—e:ﬁ 71 <! T2
lFe:n

@ This says: if e has type 71 and 71 <: 7», then we can
proceed by pretending it has type 7.

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
0000000 e]ele} 00@000000000

Record subtyping: width and depth

@ There are several different ways to define subtyping for
records.

@ Width subtyping: subtype has same fields as supertype
(with identical types), and may have additional fields at
the end:

(homiyee sy Toy ooy bkt Towk) <o (b, ooy by o)

e Depth subtyping: subtype's fields are pointwise
subtypes of supertype

T<iT e Th <i T
(hom, ooy o) <t (hom, ool 7))

@ These rules can be combined. Optionally, field reordering
can also be allowed (but is harder to implement).

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
0000000 e]ele} 000@00000000

Examples

o (We'll abbreviate P = Point, P3d = Point3d,
CP = ColoredPoint to save space...)

@ So we have:
P3d = (x:dbl, y:dbl, z:dbl) <: (x:dbl, y:dbl) = P

CP = (x:dbl, y:dbl, c:Color) <: (x:dbl, y:dbl) = P
but no other subtyping relationships hold

@ So, we can call dist on Point3d or ColoredPoint:

E x:P3dt+x:P3d P3d <: P
x: P3d - dist : P — dbl x:P3dFx:P
x : P3d F dist(x) : dbl

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
0000000 e]ele} 00000000000

Subtyping for pairs and variants

e For pairs, subtyping is componentwise

T<iT] T <! Th

TL X Ty <! T{ X T)
@ Similarly for binary variants

T <iT] T < T}

. / /
mt+n<m+mn

@ For named variants, can have additional subtyping rules
(but this is rare)

Records, Variants, and Pattern Matching Type abbreviations and definitions
0000000 000

Subtyping for functions
@ Whenis Ay — By <: A, = B,?
@ Maybe componentwise, like pairs?

T <IT] T <! T
T =T <!T, = Th

Subtyping
000008000000

Records, Variants, and Pattern Matching Type abbreviations and definitions
0000000 000

Subtyping for functions
@ Whenis Ay — By <: A, = B,?
@ Maybe componentwise, like pairs?

T <IT] T <! T
T =T <!T, = Th

@ But then we can do this (where I'(p) = P):

CP<:P CP<: CP

> xx:CP—-CP CP—-CP<.:P— CP

N xx:P— CP

Subtyping
000008000000

Fp: P

= (Ax.x)p: CP

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
0000000 e]ele} 000008000000

Subtyping for functions
@ Whenis Ay — By <: A, = B,?
@ Maybe componentwise, like pairs?

T <IT] T <! T
T =T <!T, = Th

@ But then we can do this (where I'(p) = P):

CP<:P CP<:.CP
lEXxx:CP—>CP CP—>CP<:P—CP
N=Xxx:P— CP Fr=p:P

= (Ax.x)p: CP

@ So, once ColoredPoint is a subtype of Point, we can
change any Point to a ColoredPoint also. That doesn't
seem right.

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
0000000 e]ele} 000000@00000

Covariant vs. contravariant

@ For the result type of a function (and for pairs and other
data structures), the direction of subtyping is preserved:

Ty <:Th

=T <!TL — T

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
0000000 e]ele} 000000@00000

Covariant vs. contravariant

@ For the result type of a function (and for pairs and other
data structures), the direction of subtyping is preserved:

Ty <:Th

=T <!TL — T

@ Subtyping of function results, pairs, etc., where order is
preserved, is covariant.

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
0000000 e]ele} 000000@00000

Covariant vs. contravariant

@ For the result type of a function (and for pairs and other
data structures), the direction of subtyping is preserved:

Ty <:Th

=T <!TL — T

@ Subtyping of function results, pairs, etc., where order is
preserved, is covariant.

e For the argument type of a function, the direction of
subtyping is flipped:

T <iTy

=T <!T = T2

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
0000000 e]ele} 000000@00000

Covariant vs. contravariant

@ For the result type of a function (and for pairs and other
data structures), the direction of subtyping is preserved:

Ty <:Th

=T <!TL — T

@ Subtyping of function results, pairs, etc., where order is
preserved, is covariant.

e For the argument type of a function, the direction of
subtyping is flipped:

T <iTy

=T <!T = T2

@ Subtyping of function arguments, where order is reversed,
is called contravariant.

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
0000000 e]ele} 000000080000

The "“top” and “bottom” types

@ any: a type that is a supertype of all types.
@ Such a type describes the common interface of all its
subtypes (e.g. hashing, equality in Java)
o In Scala, this is called Any

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
0000000 e]ele} 000000080000

The "“top” and “bottom” types

@ any: a type that is a supertype of all types.

@ Such a type describes the common interface of all its
subtypes (e.g. hashing, equality in Java)

o In Scala, this is called Any

@ empty: a type that is a subtype of all types.

e Usually, such a type is considered to be empty: there
cannot actually be any values of this type.

e We've actually encountered this before, as the
degenerate case of a choice type where there are zero
choices

o In Scala, this type is called Nothing. So for any Scala
type 7 we have Nothing <: T <: Any.

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping

0000000 e]ele} 000000008000

Summary: Subtyping rules

T <!Tp To<.T3

empty <: T T <. any T T 1< T3
T <iTy To <! Ty T <iTy To <! Th
TL X Tp <: Ty X T) T+ T < T+ TH

T <!Ty Tp <! T
=T <!T| = T)

Notice that we combine the covariant and contravariant rules
for functions into a single rule.

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
0000000 e]ele} 000000000800

Structural vs. Nominal subtyping

@ The approach to subtyping considered so far is called
structural.

@ The names we use for type abbreviations don’t matter,
only their structure. For example, Point3d <: Point
because Point3d has all of the fields of Point (and more).

@ Then dist(p) also runs on p : Point3d (and gives a
nonsense answer!)

@ So far, a defined type has no subtypes (other than itself).

@ By default, definitions ColoredPoint, Point and Point3d
are unrelated.

Records, Variants, and Pattern Matching Type abbreviations and definitions Subtyping
0000000 e]ele} 000000000080

Structural vs. Nominal subtyping

@ If we defined new types Point’ and Point3d’, rather than
treating them as abbreviations, then we have more
control over subtyping

@ Then we can declare ColoredPoint’ to be a subtype of
Point’

deftype Point’ = (x:dbl, y:dbl)
deftype ColoredPoint’ <: Point’ = (x:dbl, y:dbl, c:Color)

@ However, we could choose not to assert Point3d’ to be a
subtype of Point’, preventing (mis)use of subtyping to
view Point3d’s as Point’s.

@ This nominal subtyping is used in Java and Scala

o A defined type can only be a subtype of another if it is
declared as such
e More on this later!

Records, Variants, and Pattern Matching Type abbreviations and definitions
0000000 000

Summary

e Today we covered:

e Records, variants, and pattern matching
e Type abbreviations and definitions
e Subtyping

@ Next time:
e Polymorphism and type inference

Subtyping
00000000000 e

	Records, Variants, and Pattern Matching
	Type abbreviations and definitions
	Subtyping

