Parametric Polymorphism Type inference
000000000000 0000 000000000

Elements of Programming Languages

Lecture 8: Polymorphism and type inference

James Cheney
University of Edinburgh

October 16, 2025

Parametric Polymorphism Type inference
©000000000000000 000000000

Overview

@ Last time we covered type definitions, records, datatypes,
subtyping
@ Today and next week, we will cover additional forms of
abstraction
e polymorphism, type inference
e modules, interfaces
e objects, classes
e Today:
e polymorphism and type inference

Parametric Polymorphism
0@00000000000000

Consider the humble identity function

@ A function that returns its input:

Type inference
000000000

def idInt(x: Int) = x
def idString(x: String) = x
def idPair(x: (Int,String)) = x

@ Does the same thing no matter what the type is.

@ But we cannot just write this:

def id(x) = x

(In Scala, every variable needs to have a type.)

Parametric Polymorphism Type inference
00@0000000000000 000000000

Another example

@ Consider a pair “swap” operation:

def swapInt(p: (Int,Int)) = (p._2,p._1)
def swapString(p: (String,String)) = (p._2,p._1)
def swapIntString(p: (Int,String)) = (p._2,p._1)

@ Again, the code is the same in both cases; only the types
differ.

@ But we can't write

def swap(p) = (p._2,p._1)

What type should p have?

Parametric Polymorphism Type inference
000@000000000000 000000000

Another example

e Consider a higher-order function that calls its argument
twice:

def twicelInt(f: Int => Int) = {x: Int => £f(f&))}
def twiceStr(f: String => String) =
{x: String => f(f(x))}

@ Again, the code is the same in both cases; only the types
differ.

@ But we can't write

def twice(f) = {x => f(fx))}

What types should £ and x have?

Parametric Polymorphism Type inference
0000e00000000000 000000000

Type parameters

In Scala, function definitions can have type parameters

def id[A]l(x: A): A = x

This says: given a type A, the function id[A] takes an A and
returns an A.

def swap[A,Bl(p: (A,B)): (B,A) = (p._2,p.-_1)

This says: given types A,B, the function swap[A,B] takes a
pair (A,B) and returns a pair (B,A).

def twicel[A]l(f: A => A): A => A = {x:A => f(£f(x))}

This says: given a type A, the function twice[A] takes a
function £: A => A and returns a function of type A => A

Parametric Polymorphism Type inference
00000@0000000000 000000000

Parametric Polymorphism

@ Scala's type parameters are an example of a phenomenon
called polymorphism (= “many shapes”)
@ More specifically, parametric polymorphism because the
function is parameterized by the type.
e lts behavior cannot “depend on” what type replaces
parameter A.
e The type parameter A is abstract

@ We also sometimes refer to A, B, C etc. as type variables

Parametric Polymorphism Type inference
000000e000000000 000000000

Polymorphism: More examples

@ Polymorphism is even more useful in combination with
higher-order functions.

@ Recall compose from the lab:

def compose[A,B,C]1(f: A => B, g: B =>C) =
{x:A => g(£(x))}

@ Likewise, the map and filter functions:

def map[A,B](f: A => B, x: List[A]): List([B] = ...
def filter[Al(f: A => Bool, x: List[A]): List[A] = ...

(though in Scala these are usually defined as methods of
List[A] so the A type parameter and x variable are
implicit)

Parametric Polymorphism Type inference
0000000e00000000 000000000

Formalization

e We add type variables A, B, C, . .., type abstractions,
type applications, and polymorphic types:

= - | NA e e[T]
T = ---|A|VA T

@ We also use (capture-avoiding) substitution of types for
type variables in expressions and types.

@ The type VA. 7 is the type of expressions that can have
type 77’ /A] for any choice of A. (A is bound in 7.)

@ The expression AA. e introduces a type variable for use in
e. (Thus, A is bound in any type annotations in e.)

@ The expression e[r] instantiates a type abstraction

@ Define Lpgy, to be the extension of Lp,, with these
features

Parametric Polymorphism Type inference
00000000e0000000 000000000

Formalization: Types and type variables

@ Complication: Types now have variables. What is their
scope? When is a type variable in scope in a type?

@ The polymorphic type VA.7 binds A in 7.
e We write FTV/(7) for the free type variables of a type:

FTV(A) = {A}
FTV(Tl X 7'2) = FTV(Tl) U FTV(TQ)
FTV(T]_ + 7‘2) = FTV(T]_) U FTV(TQ)
FTV(VAT) = FTV(r)—{A}
FTV(r) = 0 otherwise
FTV(x1:m, ..., xp:Tn) = FTV(m)U---UFTV(1,)

@ Alpha-equivalence and type substitution are defined
similarly to expressions.

Parametric Polymorphism Type inference
000000000e000000 000000000

Formalization: Typechecking polymorphic
expressions

he:7 AEFTV(T) [Fe:VA T

FFAA e: VA T [+ e[ro] : T[r0/A]

@ Idea: AA. e must typecheck with parameter A not already
used elsewhere in type context

@ e[7o] applies a polymorphic expression to a type. Result
type obtained by substituting for A.

@ The other rules are unchanged

Parametric Polymorphism Type inference
0000000000e00000 000000000

Formalization: Semantics of polymorphic
expressions

@ To model evaluation, we add type abstraction as a
possible value form:

vi=---|NAe

@ with rules similar to those for A and application:

el NA. ey efr/Al |} v

e[r] I v NA. el NA. e

@ In Lpyyy, type information is irrelevant at run time.
@ (Other languages, including Scala, do retain some run
time type information.)

Parametric Polymorphism Type inference
000000000008 0000 000000000

Convenient notation

@ We can augment the syntactic sugar for function
definitions to allow type parameters:

let fun f[A]l(x:7) =e in ...
@ This is equivalent to:
let f =NA. Ax: 7. ein ..

@ In either case, a function call can be written as

Flr](x)

Parametric Polymorphism Type inference
0000000000008 000 000000000

Examples in Lpgy

@ lIdentity function
id = NAXX:A. x
@ Swap
swap = NAAB.X\x:A x B. (snd x, fst x)
e Twice
twice = NA. AMf:A — AXx:A. f(f(x))
e For example:
swap[int][str](1,"a") | ("a",1)

twice[int](Ax: 2 x x)(2) | 8

Parametric Polymorphism
0000000000000 e00

Examples, typechecked

X:AF x:A
FAA. x: A= A
FAAAMCAX:VAA— A

Fswap : VAVB.Ax B— B x A
F swap[int] : VB.int X B — B X int

- swap[int][str] : int X str — str X int

Type inference
000000000

Parametric Polymorphism Type inference
00000000000000e0 000000000

Lists and parameterized types

(]

In Scala (and other languages such as Haskell and ML),
type abbreviations and definitions can be parameterized.
List[_] is an example: given a type T, it constructs
another type List [T]

deftype List[A] = [Nil : unit; Cons : A x List[A]]

Such types are sometimes called type constructors

(See tutorial questions on lists)

We will revisit parameterized types when we cover
modules

Parametric Polymorphism Type inference
000000000000000e 000000000

Other forms of polymorphism

@ Polymorphism refers to several related techniques for
“code reuse” or “overloading”

e Subtype polymorphism: reuse based on inclusion
relations between types.

e Parametric polymorphism: abstraction over type
parameters

e Ad hoc polymorphism: Reuse of same name for multiple
(potentially type-dependent) implementations (e.g.
overloading + for addition on different numeric types,
string concatenation etc.)

@ These have some overlap

@ We will discuss overloading, subtyping and polymorphism
(and their interaction) in future lectures.

Parametric Polymorphism Type inference
000000000000 0000 900000000

Type inference

@ As seen in even small examples, specifying the type
parameters of polymorphic functions quickly becomes
tiresome

swap[int][str] map|[int][str]

@ Idea: Can we have the benefits of (polymorphic) typing,
without the costs? (or at least: with fewer annotations)

e Type inference: Given a program without full type
information (or with some missing), infer type
annotations so that the program can be typechecked.

Parametric Polymorphism Type inference
000000000000 0000 0@0000000

Hindley-Milner type inference

@ A very influential approach was developed independently
by J. Roger Hindley (in logic) and Robin Milner (in CS).

o ldea: Typecheck an expression symbolically, collecting
“constraints” on the unknown type variables

@ If the constraints have a common solution then this
solution is a most general way to type the expression
e Constraints can be solved using unification, an equation
solving technique from automated reasoning/logic
programming

@ If not, then the expression has a type error

Parametric Polymorphism Type inference
000000000000 0000 00e000000

Hindley-Milner example [Non-examinable]

@ As an example, consider swap defined as follows:
FAx: A.(snd x,fst x) : B

A, B are the as yet unknown types of x and swap.

Parametric Polymorphism
000000000000 0000

Hindley-Milner example [Non-examinable]

@ As an example, consider swap defined as follows:

FAx: A.(snd x,fst x) : B

A, B are the as yet unknown types of x and swap.

@ A lambda abstraction creates a function: hence
B = A — A; for some A; such that
x:AF (snd x, fst x) : A;

Type inference
00@000000

Parametric Polymorphism Type inference
000000000000 0000 00e000000

Hindley-Milner example [Non-examinable]

@ As an example, consider swap defined as follows:
FAx: A.(snd x,fst x) : B

A, B are the as yet unknown types of x and swap.

@ A lambda abstraction creates a function: hence
B = A — A; for some A; such that
x:AF (snd x, fst x) : A;

@ A pair constructs a pair type: hence A; = Ay X A3 where
X:AF snd x: Ay and x:AF fst x: A3

Parametric Polymorphism Type inference
000000000000 0000 00e000000

Hindley-Milner example [Non-examinable]

@ As an example, consider swap defined as follows:
FAx: A.(snd x,fst x) : B

A, B are the as yet unknown types of x and swap.

@ A lambda abstraction creates a function: hence
B = A — A; for some A; such that
x:AF (snd x, fst x) : A;

@ A pair constructs a pair type: hence A; = Ay X A3 where
X:AF snd x: Ay and x:AF fst x: A3

@ This can only be the case if x : A3 X Ay, i.e. A= Az X A,.

Parametric Polymorphism Type inference
000000000000 0000 00e000000

Hindley-Milner example [Non-examinable]

@ As an example, consider swap defined as follows:
FAx: A.(snd x,fst x) : B

A, B are the as yet unknown types of x and swap.

@ A lambda abstraction creates a function: hence
B = A — A; for some A; such that
x:AF (snd x, fst x) : A;

@ A pair constructs a pair type: hence A; = Ay X A3 where
X:AF snd x: Ay and x:AF fst x: A3

@ This can only be the case if x : A3 X Ay, i.e. A= Az X A,.

@ Solving the constraints: A= A3 x Ay, A; = Ay X Az and
SOB:A3><A2—)A2><A3

Parametric Polymorphism Type inference
000000000000 0000 000@00000

Let-bound polymorphism [Non-examinable]

@ An important additional idea was introduced in the ML
programming language, to avoid the need to explicitly
introduce type variables and apply polymorphic functions
to type arguments

@ When a function is defined using let fun (or let rec),
first infer a type:

SW8PZA3XA2—>A2XA3
@ Then abstract over all of its free type parameters.

swap : VAVB.AXx B —- B x A

e Finally, when a polymorphic function is applied, infer the
missing types.

swap(1l,"a") ~» swap[int][str](1," a")

Type inference

Parametric Polymorphism
0000e0000

0000000000000 000

ML-style inference: strengths and weaknesses

@ Strengths

e Elegant and effective
e Requires no type annotations at all

@ Weaknesses
e Can be difficult to explain errors
o In theory, can have exponential time complexity (in
practice, it runs efficiently on real programs)
e Very sensitive to extension: subtyping and other
extensions to the type system tend to require giving up
some nice properties

@ (We are intentionally leaving out a lot of technical detail.)

Parametric Polymorphism Type inference
000000000000 0000 000008000

Type inference in Scala

@ Scala does not employ full HM type inference, but uses
many of the same ideas.

@ Type information in Scala flows from function arguments
to their results

def f[A](x: List[A]): List[(A,A)] = ...
f(List(1,2,3)) // A must be Int, don’t need fl[Int]

@ and sequentially through statement blocks

List(1,2,3); // l: List[Int] inferred
£f(1); // y : List[(Int,Int)] inferred

var 1
var y

Parametric Polymorphism Type inference
000000000000 0000 000000800

Type inference in Scala

@ Type information does not flow across arguments in the
same argument list

def map[A,B](f: A => B, 1: List[A]): List([B] = ...
scala> map({x: Int => x + 1}, List(1,2,3))

resO: List[Int] = List(2, 3, 4)

scala> map({x => x + 1}, List(1,2,3))
<console>:25: error: missing parameter type

e But it can flow from earlier argument lists to later ones:

def map2[A,B](1: List[A])(f: A => B): List([B] = ...
scala> map2(List(1,2,3)) {x => x + 1}
resl: List[Int] = List(2, 3, 4)

Parametric Polymorphism Type inference
000000000000 0000 000000080

Type inference in Scala: strengths and limitations

@ Compared to Java, many fewer annotations needed

@ Compared to ML, Haskell, etc. many more annotations
needed

@ The reason has to do with Scala’s integration of
polymorphism and subtyping

e needed for integration with Java-style object/class
system

o Combining subtyping and polymorphism is tricky (type
inference can easily become undecidable)

e Scala chooses to avoid global constraint-solving and
instead propagate type information locally

Parametric Polymorphism Type inference
000000000000 0000 00000000e

Summary

@ Today we covered:
e The idea of thinking of the same code as having many
different types

e Parametric polymorphism: makes the type parameter
explicit and abstract

o Brief coverage of type inference.
@ Next time:

e Programs, modules, and interfaces

	Parametric Polymorphism
	Type inference

