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Overview

@ Last time we covered type definitions, records, datatypes,
subtyping
@ Today and next week, we will cover additional forms of
abstraction
e polymorphism, type inference
e modules, interfaces
e objects, classes
e Today:
e polymorphism and type inference
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Consider the humble identity function

@ A function that returns its input:

Type inference
000000000

def idInt(x: Int) = x
def idString(x: String) = x
def idPair(x: (Int,String)) = x

@ Does the same thing no matter what the type is.

@ But we cannot just write this:

def id(x) = x

(In Scala, every variable needs to have a type.)
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Another example

@ Consider a pair “swap” operation:

def swapInt(p: (Int,Int)) = (p._2,p._1)
def swapString(p: (String,String)) = (p._2,p._1)
def swapIntString(p: (Int,String)) = (p._2,p._1)

@ Again, the code is the same in both cases; only the types
differ.

@ But we can't write

def swap(p) = (p._2,p._1)

What type should p have?
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Another example

e Consider a higher-order function that calls its argument
twice:

def twicelInt(f: Int => Int) = {x: Int => £f(f&))}
def twiceStr(f: String => String) =
{x: String => f(f(x))}

@ Again, the code is the same in both cases; only the types
differ.

@ But we can't write

def twice(f) = {x => f(fx))}

What types should £ and x have?
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Type parameters

In Scala, function definitions can have type parameters

def id[A]l(x: A): A = x

This says: given a type A, the function id[A] takes an A and
returns an A.

def swap[A,Bl(p: (A,B)): (B,A) = (p._2,p.-_1)

This says: given types A,B, the function swap[A,B] takes a
pair (A,B) and returns a pair (B,A).

def twicel[A]l(f: A => A): A => A = {x:A => f(£f(x))}

This says: given a type A, the function twice[A] takes a
function £: A => A and returns a function of type A => A
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Parametric Polymorphism

@ Scala's type parameters are an example of a phenomenon
called polymorphism (= “many shapes”)
@ More specifically, parametric polymorphism because the
function is parameterized by the type.
e lts behavior cannot “depend on” what type replaces
parameter A.
e The type parameter A is abstract

@ We also sometimes refer to A, B, C etc. as type variables
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Polymorphism: More examples

@ Polymorphism is even more useful in combination with
higher-order functions.

@ Recall compose from the lab:

def compose[A,B,C]1(f: A => B, g: B =>C) =
{x:A => g(£(x))}

@ Likewise, the map and filter functions:

def map[A,B](f: A => B, x: List[A]): List([B] = ...
def filter[Al(f: A => Bool, x: List[A]): List[A] = ...

(though in Scala these are usually defined as methods of
List[A] so the A type parameter and x variable are
implicit)
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Formalization

e We add type variables A, B, C, . .., type abstractions,
type applications, and polymorphic types:

= - | NA e e[T]
T = ---|A|VA T

@ We also use (capture-avoiding) substitution of types for
type variables in expressions and types.

@ The type VA. 7 is the type of expressions that can have
type 77’ /A] for any choice of A. (A is bound in 7.)

@ The expression AA. e introduces a type variable for use in
e. (Thus, A is bound in any type annotations in e.)

@ The expression e[r] instantiates a type abstraction

@ Define Lpgy, to be the extension of Lp,, with these
features
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Formalization: Types and type variables

@ Complication: Types now have variables. What is their
scope? When is a type variable in scope in a type?

@ The polymorphic type VA.7 binds A in 7.
e We write FTV/(7) for the free type variables of a type:

FTV(A) = {A}
FTV(Tl X 7'2) = FTV(Tl) U FTV(TQ)
FTV(T]_ + 7‘2) = FTV(T]_) U FTV(TQ)
FTV(VAT) = FTV(r)—{A}
FTV(r) = 0 otherwise
FTV(x1:m, ..., xp:Tn) = FTV(m)U---UFTV(1,)

@ Alpha-equivalence and type substitution are defined
similarly to expressions.
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Formalization: Typechecking polymorphic
expressions

he:7 AEFTV(T) [Fe:VA T

FFAA e: VA T [+ e[ro] : T[r0/A]

@ Idea: AA. e must typecheck with parameter A not already
used elsewhere in type context

@ e[7o] applies a polymorphic expression to a type. Result
type obtained by substituting for A.

@ The other rules are unchanged
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Formalization: Semantics of polymorphic
expressions

@ To model evaluation, we add type abstraction as a
possible value form:

vi=---|NAe

@ with rules similar to those for A and application:

el NA. ey efr/Al |} v

e[r] I v NA. el NA. e

@ In Lpyyy, type information is irrelevant at run time.
@ (Other languages, including Scala, do retain some run
time type information.)
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Convenient notation

@ We can augment the syntactic sugar for function
definitions to allow type parameters:

let fun f[A]l(x:7) =e in ...
@ This is equivalent to:
let f =NA. Ax: 7. ein ..

@ In either case, a function call can be written as

Flr](x)
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Examples in Lpgy

@ lIdentity function
id = NAXX:A. x
@ Swap
swap = NAAB.X\x:A x B. (snd x, fst x)
e Twice
twice = NA. AMf:A — AXx:A. f(f(x))
e For example:
swap[int][str](1,"a") | ("a",1)

twice[int](Ax: 2 x x)(2) | 8
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Examples, typechecked

X:AF x:A
FAA. x: A= A
FAAAMCAX:VAA— A

Fswap : VAVB.Ax B— B x A
F swap[int] : VB.int X B — B X int

- swap[int][str] : int X str — str X int

Type inference
000000000



Parametric Polymorphism Type inference
00000000000000e0 000000000

Lists and parameterized types

(]

In Scala (and other languages such as Haskell and ML),
type abbreviations and definitions can be parameterized.
List[_] is an example: given a type T, it constructs
another type List [T]

deftype List[A] = [Nil : unit; Cons : A x List[A]]

Such types are sometimes called type constructors

(See tutorial questions on lists)

We will revisit parameterized types when we cover
modules
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Other forms of polymorphism

@ Polymorphism refers to several related techniques for
“code reuse” or “overloading”

e Subtype polymorphism: reuse based on inclusion
relations between types.

e Parametric polymorphism: abstraction over type
parameters

e Ad hoc polymorphism: Reuse of same name for multiple
(potentially type-dependent) implementations (e.g.
overloading + for addition on different numeric types,
string concatenation etc.)

@ These have some overlap

@ We will discuss overloading, subtyping and polymorphism
(and their interaction) in future lectures.
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Type inference

@ As seen in even small examples, specifying the type
parameters of polymorphic functions quickly becomes
tiresome

swap[int][str] map|[int][str]

@ Idea: Can we have the benefits of (polymorphic) typing,
without the costs? (or at least: with fewer annotations)

e Type inference: Given a program without full type
information (or with some missing), infer type
annotations so that the program can be typechecked.
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Hindley-Milner type inference

@ A very influential approach was developed independently
by J. Roger Hindley (in logic) and Robin Milner (in CS).

o ldea: Typecheck an expression symbolically, collecting
“constraints” on the unknown type variables

@ If the constraints have a common solution then this
solution is a most general way to type the expression
e Constraints can be solved using unification, an equation
solving technique from automated reasoning/logic
programming

@ If not, then the expression has a type error
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Hindley-Milner example [Non-examinable]

@ As an example, consider swap defined as follows:
FAx: A.(snd x,fst x) : B

A, B are the as yet unknown types of x and swap.
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Hindley-Milner example [Non-examinable]

@ As an example, consider swap defined as follows:

FAx: A.(snd x,fst x) : B

A, B are the as yet unknown types of x and swap.

@ A lambda abstraction creates a function: hence
B = A — A; for some A; such that
x:AF (snd x, fst x) : A;

Type inference
00@000000
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Hindley-Milner example [Non-examinable]

@ As an example, consider swap defined as follows:
FAx: A.(snd x,fst x) : B

A, B are the as yet unknown types of x and swap.

@ A lambda abstraction creates a function: hence
B = A — A; for some A; such that
x:AF (snd x, fst x) : A;

@ A pair constructs a pair type: hence A; = Ay X A3 where
X:AF snd x: Ay and x:AF fst x: A3
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Hindley-Milner example [Non-examinable]

@ As an example, consider swap defined as follows:
FAx: A.(snd x,fst x) : B

A, B are the as yet unknown types of x and swap.

@ A lambda abstraction creates a function: hence
B = A — A; for some A; such that
x:AF (snd x, fst x) : A;

@ A pair constructs a pair type: hence A; = Ay X A3 where
X:AF snd x: Ay and x:AF fst x: A3

@ This can only be the case if x : A3 X Ay, i.e. A= Az X A,.
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Hindley-Milner example [Non-examinable]

@ As an example, consider swap defined as follows:
FAx: A.(snd x,fst x) : B

A, B are the as yet unknown types of x and swap.

@ A lambda abstraction creates a function: hence
B = A — A; for some A; such that
x:AF (snd x, fst x) : A;

@ A pair constructs a pair type: hence A; = Ay X A3 where
X:AF snd x: Ay and x:AF fst x: A3

@ This can only be the case if x : A3 X Ay, i.e. A= Az X A,.

@ Solving the constraints: A= A3 x Ay, A; = Ay X Az and
SOB:A3><A2—)A2><A3
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Let-bound polymorphism [Non-examinable]

@ An important additional idea was introduced in the ML
programming language, to avoid the need to explicitly
introduce type variables and apply polymorphic functions
to type arguments

@ When a function is defined using let fun (or let rec),
first infer a type:

SW8PZA3XA2—>A2XA3
@ Then abstract over all of its free type parameters.

swap : VAVB.AXx B —- B x A

e Finally, when a polymorphic function is applied, infer the
missing types.

swap(1l,"a") ~» swap[int][str](1," a")
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ML-style inference: strengths and weaknesses

@ Strengths

e Elegant and effective
e Requires no type annotations at all

@ Weaknesses
e Can be difficult to explain errors
o In theory, can have exponential time complexity (in
practice, it runs efficiently on real programs)
e Very sensitive to extension: subtyping and other
extensions to the type system tend to require giving up
some nice properties

@ (We are intentionally leaving out a lot of technical detail.)
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Type inference in Scala

@ Scala does not employ full HM type inference, but uses
many of the same ideas.

@ Type information in Scala flows from function arguments
to their results

def f[A](x: List[A]): List[(A,A)] = ...
f(List(1,2,3)) // A must be Int, don’t need fl[Int]

@ and sequentially through statement blocks

List(1,2,3); // l: List[Int] inferred
£f(1); // y : List[(Int,Int)] inferred

var 1
var y
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Type inference in Scala

@ Type information does not flow across arguments in the
same argument list

def map[A,B](f: A => B, 1: List[A]): List([B] = ...
scala> map({x: Int => x + 1}, List(1,2,3))

resO: List[Int] = List(2, 3, 4)

scala> map({x => x + 1}, List(1,2,3))
<console>:25: error: missing parameter type

e But it can flow from earlier argument lists to later ones:

def map2[A,B](1: List[A])(f: A => B): List([B] = ...
scala> map2(List(1,2,3)) {x => x + 1}
resl: List[Int] = List(2, 3, 4)
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Type inference in Scala: strengths and limitations

@ Compared to Java, many fewer annotations needed

@ Compared to ML, Haskell, etc. many more annotations
needed

@ The reason has to do with Scala’s integration of
polymorphism and subtyping

e needed for integration with Java-style object/class
system

o Combining subtyping and polymorphism is tricky (type
inference can easily become undecidable)

e Scala chooses to avoid global constraint-solving and
instead propagate type information locally
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Summary

@ Today we covered:
e The idea of thinking of the same code as having many
different types

e Parametric polymorphism: makes the type parameter
explicit and abstract

o Brief coverage of type inference.
@ Next time:

e Programs, modules, and interfaces
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