
Elements of Programming Languages
Tutorial 4: Subtyping and polymorphism

Solution notes

1. Subtyping and type bounds

(a)

Sub1 <: Super Sub2 <: Super

(b) i. Sub1× Sub2 <: Super × Super This holds:

Sub1 <: Super Sub2 <: Super

Sub1× Sub2 <: Super × Super

ii. Sub1 → Sub2 <: Super → Super This does not hold since Super <: Sub1 doesn’t.

???
Super <: Sub1 Sub2 <: Super

Sub1 → Sub2 <: Super → Super

iii. Super → Super <: Sub1 → Sub2 This does not hold since Super <: Sub2 doesn’t.

Sub1 <: Super
???

Super <: Sub2

Super → Super <: Sub1 → Sub2

iv. Super → Sub1 <: Sub2 → Super This holds:

Sub1 <: Super Sub2 <: Super

Super → Sub1 <: Sub2 → Super

v. (⋆) (Sub1 → Sub1) → Sub2 <: (Super → Sub1) → Super This holds:

Sub1 <: Super Sub1 <: Sub1

Super → Sub1 <: Sub1 → Sub1 Sub2 <: Super

(Sub1 → Sub1) → Sub2 <: (Super → Sub1) → Super

(c) If we call f1 on Sub2(true) then the result has type Super. We can’t access the b field because of a
type mismatch.

(d) This typechecks, because in either case we return x which has type A. If we apply it to a value of
type Sub1 or Sub2 we get the same value back. If we apply it to 42 : Int then we get a match error.

(e) This typechecks, because as for f2 we return x : A in either case. However, now if we apply to
Sub1 or Sub2 we get the same value back, while if we apply to something of an unrelated type we
get a type error. This seems to solve the problem.

2. Typing derivations

Construct typing derivations for the following expressions, or argue why they are not well-formed:

(a) ΛA.λx:A.x+ 1 does not typecheck because A is not int.

???
x:A ⊢ x : int x:A ⊢ 1 : int

x:A ⊢ x+ 1 : int
⊢ λx:A.x+ 1 : A → int

⊢ ΛA.λx:A.x+ 1 : ∀A.A → int

1



(b) (⋆) ΛA.λx:A × A.if fst x == snd x then fst x else snd x (and how does its well-formedness
depend on the typing rule for equality?)

Γ ⊢ x:A×A
Γ ⊢ fst x : A

Γ ⊢ x:A×A
Γ ⊢ snd x : A

Γ ⊢ fst x == snd x : bool
Γ ⊢ x:A×A
Γ ⊢ fst x : A

Γ ⊢ x:A×A
Γ ⊢ snd x : A

Γ ⊢ if fst x == snd x then fst x else snd x : A
⊢ λx:A×A.if fst x == snd x then fst x else snd x : A×A → A

⊢ ΛA.λx:A×A.if fst x == snd x then fst x else snd x : ∀A.A×A → A

where Γ = x:A × A. this only works because we have defined ==’s typing rule so that any two
values of the same type can be compared for equality, including two values of an unknown type
A. However, if == is restricted to base types (as in Coursework 1) then we cannot do this.

3. Evaluation derivations Construct evaluation derivations for the following expressions, or explain why
they do not evaluate:

(a) (ΛA.λx:A.x+ 1)[int] 42 Notice that this does not typecheck, but still evaluates OK.

ΛA.λx:A.x+ 1 ⇓ ΛA.λx:A.x+ 1 λx:int.x+ 1 ⇓ λx:int.x+ 1

(ΛA.λx:A.x+ 1)[int] ⇓ λx:int. x+ 1 42 ⇓ 42

...
42 + 1 ⇓ 43

(ΛA.λx:A.x+ 1)[int] 42 ⇓ 43

(b) (ΛA.λx:A.x+ 1)[bool] true

This does not typecheck, and does not evaluate either, because when we try to add true to 1 we
get stuck.

(ΛA.λx:A.x+ 1) ⇓ (ΛA.λx:A.x+ 1) λx:bool.x+ 1 ⇓ λx:bool.x+ 1)

(ΛA.λx:A.x+ 1)[bool] ⇓ λx:bool.x+ 1 true ⇓ true
???

true+ 1 ⇓???
(ΛA.λx:A.x+ 1)[bool] true ⇓??

4. (⋆) Lists and polymorphism

(a)

ΛA.ΛB.λf :A → B.recm(x:list[A]) : list[B].
caselist x of {nil ⇒ nil ; x :: xs ⇒ (fx) :: m(xs)}

Notice that the rec only handles the inner function call.
(b)

⊢ map : ∀A.∀B.(A → B) → (list[A] → list[B])

⊢ map[int] : ∀B.(int → B) → (list[int] → list[B])

⊢ map[int][int] : (int → int) → (list[int] → list[int])

x:int ⊢ x:int x:int ⊢ 1 : int
x:int ⊢ x+ 1 : int

⊢ λx:int.x+ 1 : int → int

⊢ map[int][int](λx.x+ 1) : list[int] → list[int]

⊢ 2 : int ⊢ nil : list[int]

⊢ (2 :: nil) : list[int]

⊢ map[int][int](λx.x+ 1)(2 :: nil) : list[int]

(c) This question is intended to provoke discussion; the answer to this question depends on what “de-
finable” means, which is not a concept we have carefully defined.
In one sense, lists and the list operations are not definable, because there is no way to create a data
structure of infinite “size” using just pairs and sums (e.g. for any finite program, we can bound the
maximum size of a data structure the program constructs.)
In another reasonable sense, lists could be defined (in principle) by encoding pairs, sums, and lists
into natural numbers (assuming infinite precision arithmetic). However, this too might be unsatis-
factory, since we would not easily be able to do this uniformly in the type of list elements τ , and it
would be very difficult to translate a polymorphic program operating over lists.

2


