Elements of Programming Languages
Tutorial 5: Modules and Objects
Solution notes

1. Subtyping and Contravariance

(a) £ could callits function argument on any Shape, e.g. either Circle or Rectangle. Thus, calling £ on
a function of type Rectangle => Int is not allowed, because Rectangle => Int is not a subtype
of Shape => Int. If this call was executed, then £ could call its argument on a Circle, which would
not match the expected Rectangle argument type.

(b) g canonly callits function argument on a circle. Thus, calling g on a function of type Shape => Int
is allowed, because shape => Intisasubtypeofcircle => Int.If we execute this call, then what-
ever g does with its function argument will be fine, since the expected type of the function argument
is Shape, so it can handle any particular type of shape such as circle.

2. Modules and Interfaces in Scala

(a) The components are accessed as follows:

A.c A.d A.f B.c B.d B.f

(b) After the two import statements, d refers to the string value B.d = "1234" since this was the most
recent import. If we import in the opposite order it referstoa.d = 2.

(c) The trait should be something like:

trait ABlike ({

type T
val c: T
val d: T

def f(x: T, y: T): T
}

(d)

def g(x: ABlike) = x.f(x.c,x.d)

According to the Scala interpreter the return type is x. T.

(e)

g (new ABlike({
type T = Boolean
val c = true
val d = false
def f(x: T, y: T) = X && y
})

3. Type parameters
(a)

abstract class Tree[A]
case class Leaf[A] (a: A) extends Tree[A]
case class Node[A] (tl: Tree[A], t2: Tree[A]) extends Tree[A]

1




(b)

def sum(t: Tree[Int]) : Int = t match {
case Leaf(a) => a
case Node (tl,t2) => sum(tl) + sum(t2)
}

(©)

def map[A,B] (t: Tree[A]) (f: A => B): Tree[B] = t match {
case Leaf (a) => Leaf(f(a))
case Node (tl,t2) => Node (map(tl) (f), map(t2) (f))

}

(d)

def flatten[A] (t: Tree[Tree[A]]): Tree[A] = t match {
case Leaf(u) => u
case Node (tl,t2) => Node(flatten(tl),flatten(t2))

}

(e)

def flatMap(t: Treel[A]) (f: A => Tree[B]) = flatten(map(t) (f))

4. (x) Ad hoc polymorphism
(a)

class List[+A] extends HasSize

case object Nil extends List[Nothing] {
def size() =0

}

case class Cons[+A] (head: A, tail: List[A]) extends List[A] {
def size() = tail.size() + 1

}

(b)

def sameSize (x: HasSize, y: HasSize) = x.size() == y.size()




