Elements of Programming Languages
Tutorial 6: Classes, subtyping, and comprehensions
Solution notes

Starred exercises are more challenging. Please try all unstarred exercises before the tutorial meeting.

1. Covariant and contravariant type parameters Notice that the Box classes have no content — they are just
to demonstrate covariance and contravariance.

A= | Any | Nothing | Super | Subl | Sub2
gl(new Box1[A])) | Error OK OK OK OK

g2(new Box1[A])) | Error OK Err OK | Error
h1l(new Box2[A])) | OK Error OK | Error | Error
h2(new Box2[A])) | OK Error OK OK | Error

The OK cases are those where the subtyping relationship holds. The Error cases are those where the
relationship doesn’t hold. It may also be helpful to draw a simple lattice diagram (i.e. a tree with Super
at the top and Subl and Sub2 as children) and show the subsets of the tree corresponding to the types
that are valid for each call.

2. Parameterized traits The trait should look something like this:

trait Ordered[T] {
def compare(that: T): Int
def < (that: T): Boolean = this.compare(that) < 0
def <= (that: T): Boolean = this.compare (that) <= 0
def equalTo (that: T): Boolean = this.compare (that) == 0
def nequalTo (that: T): Boolean = this.compare(that) != 0
def > (that: T): Boolean = this.compare (that) > 0
def >= (that: T): Boolean = this.compare(that) >= 0

3. List comprehensions

(a)

Result = List (2,3,4)
List(1,2,3) .map{x => x + 1}
// or equivalently
List (1,2,3).flatMap{x => List(x + 1)}

(b)
Result = List (1)
List(1,2,3).filter{x => x % 2 == 0}.map{x => x / 2}
// or equivalently
List(1,2,3).flatMap{x => if (x % 2 == 0) {List(x/2)} else {Nil}}
(€) (%)
Result = List ((1,2), (1,3), (2,3))
List (1,2,3).flatMap{x => List (1,2,3).filter{y => x < y}.map{y => (x,y)}}
// or



List(1,2,3).flatMap{x => List(1,2,3).flatMap{y =>
if (x < y) {List((x,y))} else {Nil} }}

4. (x) Covariant lists

(a) Something like

Cons (1,Cons ("abc",Nil))

(b) Something like this:

abstract class List[+A] {
def append|[C >: A, B <: C] (m:List[B]):List[C]
}
case object Nil extends List[Nothing] {
def append[C >: Nothing, B <: C] (m:List[B]): List[C] =m
}
case class Cons[+A] (head: A, tail: List[A]) extends List[A] {
def append|[C>: A,B<:C] (m: List[B]): List[C] = Cons[C] (head, tail.append[C,B] (m))
}

This is a little tricky. For the Nil case, we need to say that ¢ >: Nothing since A has been instan-
tiated to Nothing. For the Cons case, the type parameters on append seem necessary to make the
typechecker happy. The type parameters on Cons are not necessary, but included to help clarify
what is going on.

The supertype and subtype bounds are both necessary; if we remove ¢ >: A then we don’t know
that we can put 2’s into the result list and if we remove B <: ¢ then we don’t know that we can put
B’s into the result list.



