
Elements of Programming Languages
Tutorial 3: Recursion and data structures

Week 5 (October 13–17, 2025)

Exercises marked ⋆ are more advanced. Please try all unstarred exercises before
the tutorial meeting.

1. Pairs, variants, and polymorphism in Scala Scala provides a form of ab-
straction over types called polymorphism (aka generics in Java). We will dis-
cuss polymorphism in more detail in a later lecture, but for the purpose of
this tutorial we will just explain that a Scala function definitoin can take type
parameters such as A,B,C which give names to types that can be used in the
function definition, and which can be instantiated to different actual types
whenthe function is called. So for example in the following function

def f[A,B,C](x: T1, ..., xn: Tn): T = {...}

the parameters A,B,C can be used in the type annotations T1,...,Tn,T as
well as possibly inside the function definition.

Scala includes built-in pair types (T1,T2), with pairing written (e1,e2) and
projection written e._1, e._2. Likewise, Scala’s library includes binary sums
Either[T1,T2] with constructors Left(_) and Right(_). Pattern matching
can be used to analyze Either[T1,T2]. Using these operations, write Scala
functions having the following types, polymorphic in A,B,C:

(a) ((A,B)) => (B,A). That is, a function taking as its only argument a
pair (A,B) and returning a pair (B,A).

(b) Either[A,B] => Either[B,A]

(c) ((A,B) => C) => (A => (B => C))

(d) (A => (B => C)) => ((A,B) => C)

(e) (Either[A,B] => C) => (A => C, B => C)

(f) (A => C, B => C) => (Either[A,B] => C)

2. Typing derivations Construct typing derivations for the following expres-
sions, or argue why they are not well-formed:

(a) λx:int+ bool.case x of {left(y) ⇒ y == 0 ; right(z) ⇒ z}
(b) (⋆) λx:int×int.if fst x == snd x then left(fst x) else right(snd x)

1



3. Lists

We could add built-in lists to LData as follows:

e ::= · · · | nil | e1 :: e2 | caselist e of {nil ⇒ e1 ; x :: y ⇒ e2}
v ::= · · · | nil | v1 :: v2

τ ::= · · · | list[τ ]

Define LList to be LData extended with the above constructs.

The typing rule for caselist is:

Γ ⊢ e : list[τ ] Γ ⊢ e1 : τ ′ Γ, x:τ, y:list[τ ] ⊢ e2 : τ ′

Γ ⊢ caselist e of {nil ⇒ e1 ; x :: y ⇒ e2} : τ ′

The basic idea here is: Given a list e, a caselist expression does a case analy-
sis. If e evaluates to nil, then we evaluate e1. Otherwise, e must evaluate to
a non-empty list of the form v :: v′, and we bind x to the head element v and
y to the tail v′, and evaluate e2.

(a) Write appropriate typing rules for nil and ::.

(b) (⋆) Write appropriate evaluation rules for the above constructs.

4. (⋆) Multiple argument functions and mutual recursion

(a) So far, our function definitions take only one argument. Consider LData

with named functions extended with multi-argument function defini-
tions and applications:

e ::= · · · | let fun f(x1 : τ1, x2 : τ2) = e1 in e2 | f(e1, e2)

i. Write appropriate typing rules for these constructs.
ii. Show that these constructs can be defined in LData.

iii. What about functions of three or more arguments?

(b) In Lecture 5, we considered a simple form of recursion that just defines
one recursive function with one argument. Part 4 of this tutorial showed
how to accommodate multiple arguments. But what about mutual re-
cursion?
A simple example is

let rec even(x:int) : bool = if x == 0 then true else odd(x− 1)
and odd(x:int) : bool = if x == 0 then false else even(x− 1)
in e

Show that we can use pairing and rec to define these mutually recursive
functions, by filling in the following template with an expression having
type unit → ((int → bool)× (int → bool)) with the desired behavior:

let p = · · · in
let pair (even, odd) = p() in
e

Why do we need to define p as a function taking a unit argument, in-
stead of as a pair?

2


