Elements of Programming Languages
Tutorial 4: Subtyping and polymorphism
Week 6 (October 20-24, 2025)

Exercises marked x are more advanced. Please try all unstarred exercises before
the tutorial meeting.

1. Subtyping and type bounds Consider the following Scala code:

abstract class Super
case class Subl (n: Int) extends Super
case class Sub2 (b: Boolean) extends Super

This defines an abstract superclass super, and subclasses with integer and
boolean parameters.

(a) What subtyping relationships hold as a result of the above declarations?

(b) For each of the following subtyping judgments, write a derivation show-
ing the judgment holds or argue that it doesn’t hold.
i Subl x Sub2 <: Super x Super
ii. Subl — Sub2 <: Super — Super
iii. Super — Super <: Subl — Sub2
iv. Super — Subl <: Sub2 — Super
V. (%) (Subl — Subl) — Sub2 <: (Super — Subl) — Super

(c) Suppose we have a function

def fl(x: Super): Super = x match ({
case Subl (n) => x
case Sub2 (b) => x

}

that simply inspects the type of the argument but preserves the value.
Try running £1 on Sub2 (true). What type does it have? What happens
if you try to access the b field of the result?

(d) Now consider a different version of this function:

def f2[A] (x: A): A
case Subl (n) => x
case Sub2(b) => x

}

= x match {

where we have abstracted over the argument type. Does this typecheck?
Why or why not? If it typechecks, what happens if we apply it to values
of type subl, Sub2, Int?

(e) Finally, consider this version:

def f3[A <: Super](x: A): A = x match {
case Subl(n) => x
case Sub2(b) =>x

}

Here, we have used Scala’s support for a feature called type bounds to
constrain A to be a subtype of Super, with return type a. Does this type-
check? Why or why not? If it typechecks, does it solve the problems we
encountered with £1 and £2?
2. Typing derivations
Construct typing derivations for the following expressions, or argue why
they are not well-formed:
(a) AMAdx:Ax+1
(b) (¥*) AAXx:A x A.if fst x == snd x then fst = else snd z (and how
does its well-formedness depend on the typing rule for equality?)

3. Evaluation derivations Construct evaluation derivations for the following
expressions, or explain why they do not evaluate:

(@) (AAAz:A.x + 1)[int] 42
(b) (AAXz:A.x + 1)[bool] true

4. (%) Lists and polymorphism Recall the proposed rules for lists from the pre-
vious tutorial.

e u= ---|nil|ej ey | caserjsreof {nil =e;; 1y =es}
v ou= .- |nil|wg v
T u= ---|list|7]

Define L s to be Lpoy extended with the above constructs.
(a) Write a polymorphic function map that has this type:
VAVB.(A — B) — (list[A] — list[B])

so that map(f)(!) is the function that traverses a list of A’s and, for each
element z in [, applies the function f to it.

(b) Write out a typing derivation tree for the expression
map|int][int](Az.z + 1)(2 :: nil)

assuming that map has the type given above.

(c) Arelists and their associated operations definable in Lp,, already? Why
or why not?

