HUBS AND CENTRALITY

Last week recap and some real-world examples

Assortativity: high-degree nodes connect more likely to high-degree nodes.

Assortativity: high-degree nodes connect more likely to high-degree nodes.

Clustering: your friends are friends with each other.

Assortativity: high-degree nodes connect more likely to high-degree nodes.

Clustering: your friends are friends with each other.

Paths: the "steps" it takes to reach other nodes.

Low density

Low density Short paths

Low density
Short paths
Disassortative

Low density
Short paths
Disassortative
High clustering

Low density
Short paths
Disassortative
High clustering
Heavy-tailed degree distributions*

Italian interbank overnight market

Interbank payments transferred between commercial banks over the Fedwire Funds Service

Interbank payments transferred between commercial banks over the Fedwire Funds Service

LEARNING OUTCOMES

Learn about **network heterogeneity**Discover how to find **important nodes**Find out that **your friends have more friends than you** (really)

HETEROGENEITY

In real-world networks the importance of nodes is heterogeneous

Importance is often measured with centrality

There are several measures of centrality

DEGREE CENTRALITY

Trivially, this is the degree of a node

DEGREE CENTRALITY

Trivially, this is the degree of a node

CLOSENESS CENTRALITY

How close a node is to other nodes

$$g_i = \frac{1}{\sum_{i \neq j} \ell_{ij}}$$

CLOSENESS CENTRALITY

How close a node is to other nodes

$$g_i = \frac{1}{\sum_{i \neq j} \ell_{ij}}$$

$$\tilde{g}_i = (N-1)g_i = (N-1)\frac{1}{\sum_{i \neq j} \ell_{ij}} = \frac{1}{\sum_{i \neq j} \ell_{ij} / (N-1)}$$

CLOSENESS CENTRALITY

How close a node is to other nodes

$$g_i = \frac{1}{\sum_{i \neq j} \ell_{ij}}$$

$$\tilde{g}_i = (N-1)g_i = (N-1)\frac{1}{\sum_{i \neq j} \ell_{ij}} = \frac{1}{\sum_{i \neq j} \ell_{ij} / (N-1)}$$

Average distance

BETWEENNESS CENTRALITY

How many shortest paths pass through a node

$$b_i = \sum_{h \neq j \neq i} \frac{\sigma_{hj}(i)}{\sigma_{hj}}$$

BETWEENNESS CENTRALITY

How many shortest paths pass through a node

Number of shortest paths between h and j

$$g_3 = ?$$

$$k_3 = 4$$

$$g_3 = ?$$

$$g_3 = \frac{1}{\ell_{1,3} + \ell_{2,3} + \ell_{4,3} + \ell_{5,3}} = \frac{1}{1 + 1 + 1 + 1} = \frac{1}{4}$$

$$k_3 = 4$$

$$g_3 = \frac{1}{4}$$

$$b_3 = ?$$

$$k_3 = 4$$

$$g_3 = \frac{1}{4}$$

$$b_3 = ?$$

$$b_i = \sum_{h \neq j \neq i} \frac{\sigma_{hj}(i)}{\sigma_{hj}}$$

$$k_3 = 4$$

$$g_3 = \frac{1}{4}$$

$$b_3 = ?$$

Possible node pairs

$$k_3 = 4$$

$$g_3 = \frac{1}{4}$$

$$b_3 = ?$$

$$b_i = \sum_{h
eq j
eq i} rac{\sigma_{hj}(i)}{\sigma_{hj}}$$

$$b_i = \sum_{h \neq j \neq i} \frac{\sigma_{hj}(i)}{\sigma_{hj}} \quad \begin{array}{l} \textbf{1,2} \quad \textbf{1,3} \quad \textbf{1,4} \quad \textbf{1,5} \\ \textbf{2,3} \quad \textbf{2,4} \quad \textbf{2,5} \\ \textbf{3,4} \quad \textbf{3,5} \\ \textbf{4.5} \end{array}$$

We need to exclude $h \neq j \neq i$ some pairs

$$k_3 = 4$$

$$g_3 = \frac{1}{4}$$

$$b_3 = ?$$

$$b_i = \sum_{h \neq j \neq i} \frac{\sigma_{hj}(i)}{\sigma_{hj}}$$

We need to exclude $h \neq j \neq i$ some pairs

$$k_3 = 4$$

$$g_3 = \frac{1}{4}$$

$$b_3=$$
? No s.p. through i = 3 1,2 1,8 1,4 1,5
$$b_i=\sum_{h\neq j\neq i}\frac{\sigma_{hj}(i)}{\sigma_{hj}}$$
 3,4 3,5 4,5

$$k_3 = 4$$

$$g_3 = \frac{1}{4}$$

$$k_3 = 4$$

$$g_3 = \frac{1}{4}$$

$$b_3 = ?$$

$$b_3 = \frac{\sigma_{1,5}(3)}{\sigma_{1,5}} + \frac{\sigma_{2,4}(3)}{\sigma_{2,4}} + \frac{\sigma_{2,5}(3)}{\sigma_{2,5}} + \frac{\sigma_{4,5}(3)}{\sigma_{4,5}}$$

$$k_3 = 4$$

$$g_3 = \frac{1}{4}$$

$$b_3 = ?$$

$$b_3 = \frac{\sigma_{1,5}(3)}{\sigma_{1,5}} + \frac{\sigma_{2,4}(3)}{\sigma_{2,4}} + \frac{\sigma_{2,5}(3)}{\sigma_{2,5}} + \frac{\sigma_{4,5}(3)}{\sigma_{4,5}} = 3.5$$

 $b_1 = ?$

HOW TO MEASURE HETEROGENEITY

Degree heterogeneity
$$\kappa = \frac{\langle k^2 \rangle}{\langle k \rangle^2}$$

HOW TO MEASURE HETEROGENEITY

$$\kappa = \frac{\langle k^2 \rangle}{\langle k \rangle^2}$$

If **not** heterogeneous
$$\langle k^2 \rangle \approx \langle k \rangle^2 \approx k_0^2$$

HOW TO MEASURE HETEROGENEITY

If heterogeneous

$$\langle k^2 \rangle \gg \langle k \rangle^2$$

 $\kappa \gg 1$

FRIENDSHIP PARADOX

YOUR FRIENDS HAVE MORE FRIENDS THAN YOU

FRIENDSHIP PARADOX

SUMMARY

- **Centrality** is fundamental to understand the role of nodes
- **Centrality Distributions** represent a great tool to analyse a network
- Heterogeneity is a characteristic of real-world networks