

COMMUNITY DETECTION

The task of **finding communities** in a network
We now have all the tools to learn about **community detection**

COMMUNITY DETECTION

FOUR APPROACHES

Bridge removal

Modularty maximisation

Label propagation

Stochastic block modelling

A bridge is a link whose removal breaks the network into two parts

The most famous algorithm based on this approach is the **Girvan-Newman algorithm**

The most famous algorithm based on this approach is the **Girvan-Newman algorithm**

How do we find a bridge?

The most famous algorithm based on this approach is the **Girvan-Newman algorithm**

1 - compute link betweenness for all the links

The most famous algorithm based on this approach is the **Girvan-Newman algorithm**

- 1 compute link betweenness for all the links
- 2 remove the link with highest betweenness*

The most famous algorithm based on this approach is the **Girvan-Newman algorithm**

- 1 compute link betweenness for all the links
- 2 remove the link with highest betweenness*
- 3 repeat 1 and 1 until you have no links left

Circles went with John A

FINAL VERDICT

MAIN IDEA: WE CALCULATE HOW GOOD A COMMUNITY IS VS RANDOM BASELINE

MAIN IDEA: WE CALCULATE HOW GOOD A COMMUNITY IS VS RANDOM BASELINE

Originally introduced to know where to cut the dendrogram in Girvan-Newman

MAIN IDEA: WE COUNT HOW MANY LINKS INSIDE COMMUNITY VS RANDOM NETWORK

$$Q = \frac{1}{L} \sum_{C} \left(L_C - \frac{k_C^2}{4L} \right)$$

Difference between links in c and expected links in c with configuration model

$$Q = \frac{1}{L} \sum_{C} \left(L_C - \frac{k_C^2}{4L} \right)$$

$$Q = \frac{1}{L} \sum_{C} \left(L_C - \frac{k_C^2}{4L} \right)$$

 $\frac{k_C}{2L}$ Is the probability of randomly choosing 2L one stub in the community

$$Q = \frac{1}{L} \sum_{C} \left(L_C - \frac{k_C^2}{4L} \right)$$

 $\left(\frac{k_C}{2L}\right)^2$ Is the probability of randomly choosing two stubs in the community

There are **L** links in the network

There are L links in the network

Each link joins two stubs from community c with probability

$$\left(\frac{k_C}{2L}\right)^2$$

There are L links in the network

Each link joins two stubs from community c with probability

$$\left(\frac{k_C}{2L}\right)^2$$

Then, the expected number of links in the community is $\frac{1}{2}$

$$L\left(\frac{k_C}{2L}\right)^2 = \frac{k_C^2}{4L}$$

Difference between actual links in c and expected links in c

Directed
$$Q_d = \frac{1}{L} \sum_C \left(L_C - \frac{k_C^{in} k_C^{out}}{L} \right)$$

Weighted
$$Q_w = \frac{1}{W} \sum_C \left(W_C - \frac{s_C^2}{4W} \right)$$

Weighted and directed
$$Q_{dw} = \frac{1}{W} \sum_{C} \left(W_C - \frac{s_C^{in} s_C^{out}}{W} \right)$$

Most famous algorithms: Louvain, Leiden

Most famous algorithms: Louvain, Leiden

 start with no communities. Every nodes is moved to a community so that Q Is maximised. Repeat until no modularity gain is possible

Most famous algorithms: Louvain, Leiden

- start with no communities. Every nodes is moved to a community so that Q Is maximised. Repeat until no modularity gain is possible
- 2) the network becomes a weighted super-network, in which nodes are the communities of the original network, and weights are the number of links between communities (this includes self-loops)

a) b)

Move nodes b) a)

MODULARITY MAXIMISATION PROBLEMS

Comparison: On average Larger networks have larger modularity

Uncertainty: this approach can find positive modularity for random networks

Resolution: cannot find communities whose degree is smaller than

$$\sqrt{2L}$$

- 1) WE START WITH SINGLETONS
- 2) ONE BY ONE, WITH RANDOM ORDER, NODES TAKE THE "LABEL" (IE COMMUNITY MEMBERSHIP) OF THE MAJORITY OF THEIR NEIGHBOURS
- 3) WE REPEAT THIS UNTIL THE PARTITION IS STABLE (IE THERE ARE NO POSSIBLE CHANGES)

ISSUES

DIFFERENT RUNS FIND DIFFERENT COMMUNITIES NEEDS TO BE RUN MULTIPLE TIMES

STRENGTHS

VERY FAST
IF SOME MEMBERSHIPS ARE KNOWN, THEY CAN BE
USED TO INITIALISE THE NETWORK

Generative algorithm generates communities with given probabilities, chooses the most likely

CAN PERFORM COMMUNITY DETECTION ON A LOT OF DIFFERENT NETWORK TYPES

FOR EXAMPLE: IF $\forall r, p_{rr} = 0$ THIS REPRESENTS MULTIPARTITE NETWORKS

CAN PERFORM COMMUNITY DETECTION ON A LOT OF DIFFERENT NETWORK TYPES And can discover more than just communities

And can discover more than just communities

$$\forall r, s \quad p_{rr} > p_{rs}$$
 Classic communities $p_{rr} < p_{rs}$ Disassortative structure $\forall r \quad p_{rr} = 0$ Multipartite network

CAN PERFORM COMMUNITY DETECTION ON A LOT OF DIFFERENT NETWORK TYPES

And can discover more than just communities

$$\forall r,s \quad p_{rr} > p_{rs}$$
 Classic communities $p_{rr} < p_{rs}$ Disassortative structure $\forall r \quad p_{rr} = 0$ Multipartite network $\forall r,s \quad p_{rr} = p_{rs} = p$ Random network

LIMITS:
NEEDS PRIOR KNOWLEDGE ON NUMBER OF
COMMUNITIES
STRENGHTS:
EVERYTHING ELSE

