Recap

Independent cascade: irreversible, simple contagion

Linear threshold: a fraction of neighbours must agree

Voter model: flipping states

Deffuant model: continuous opinions, clustered

convergence

Which model would you use?

Video becoming viral
Marketing
Opinions on stock markets

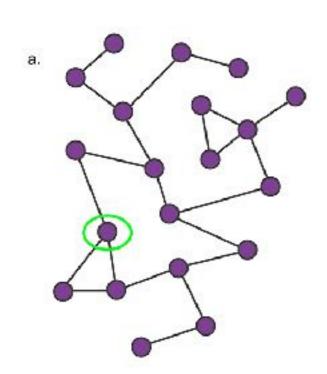
Robustness and control

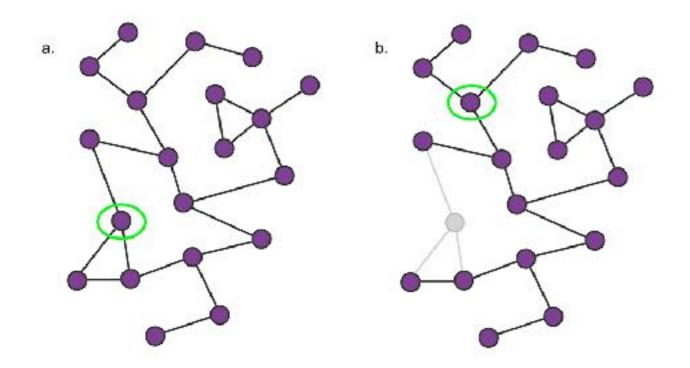
Learning outcomes

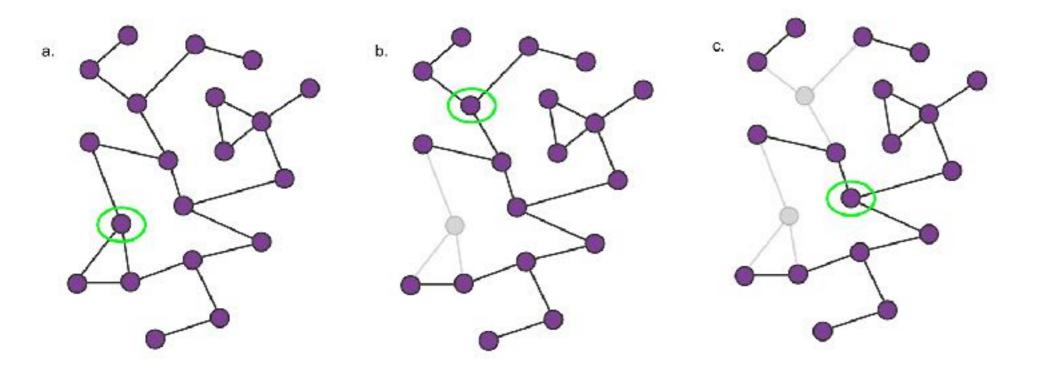
Robustness of different networks

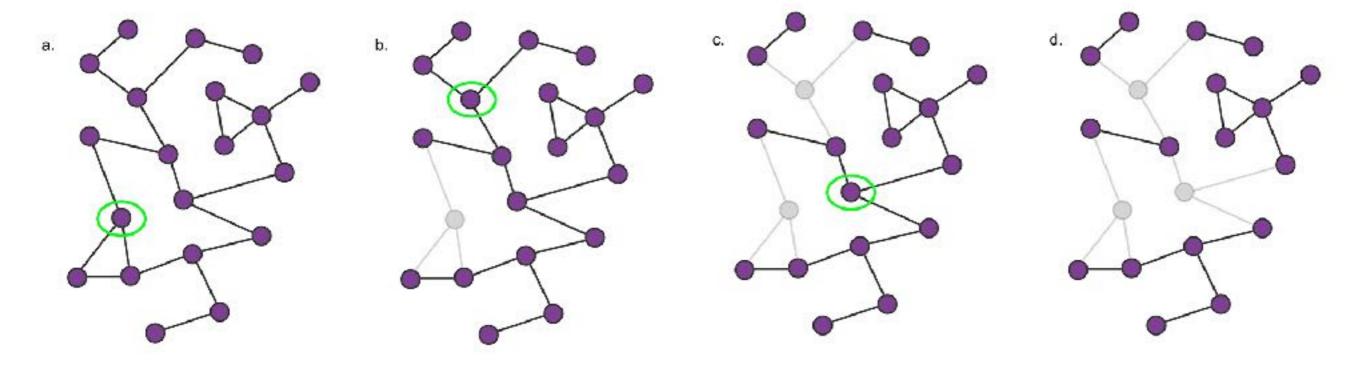
Financial networks and systemic risk

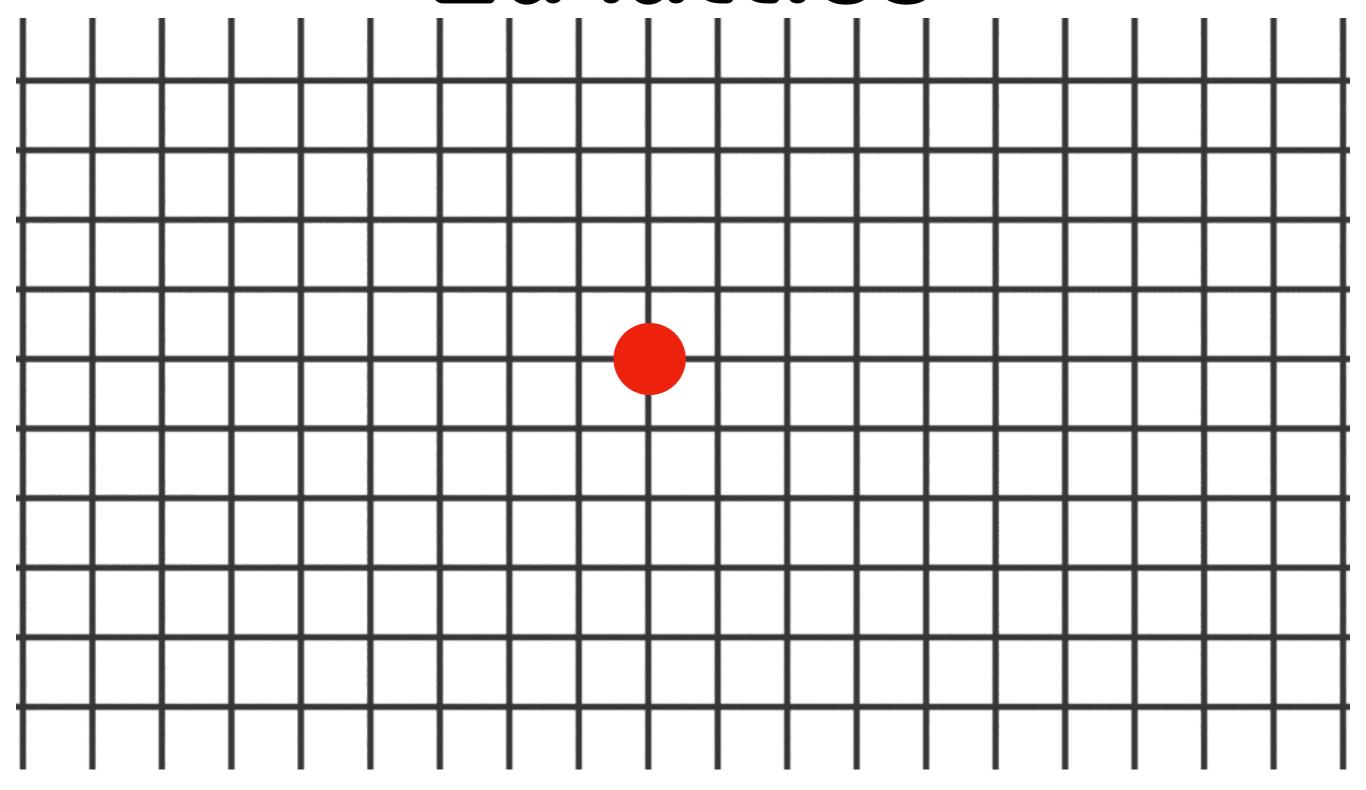
Overview of targeting strategies

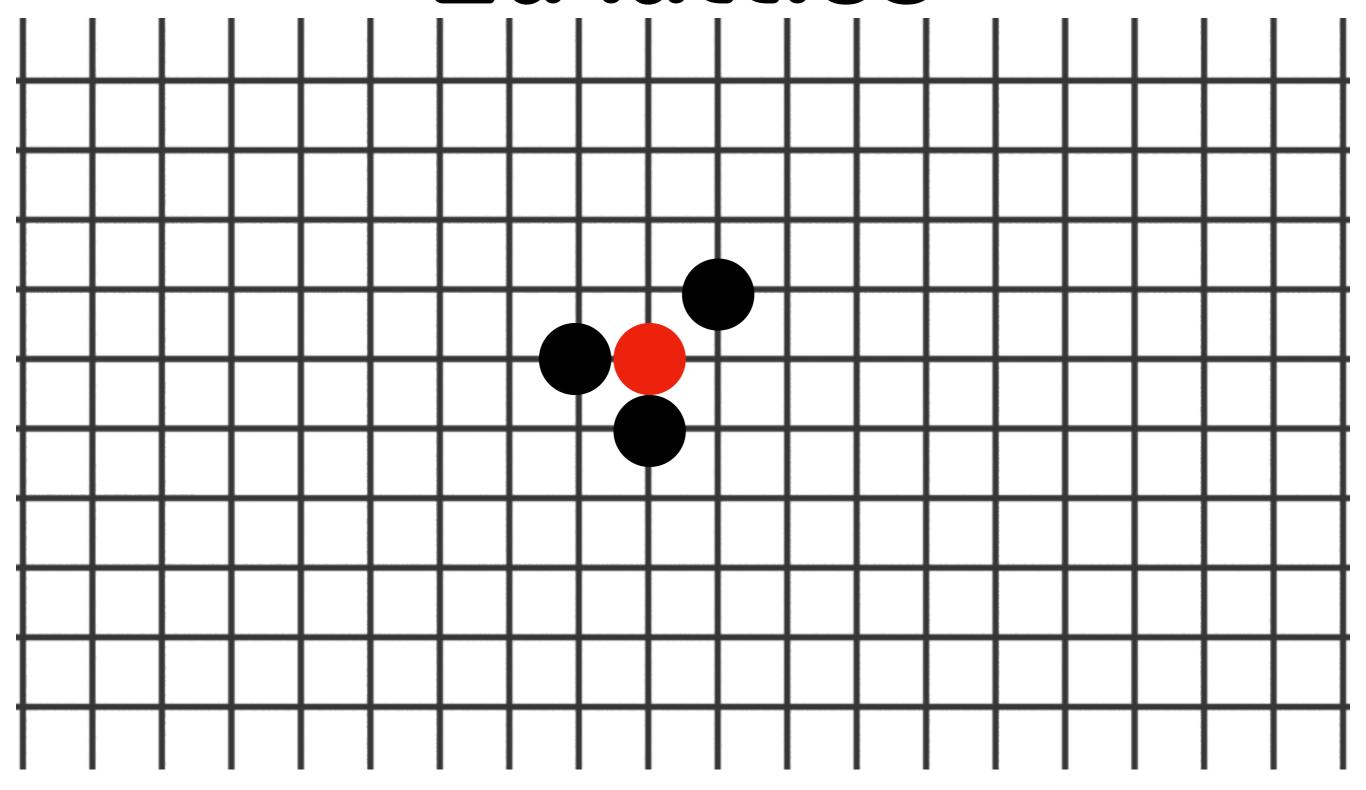


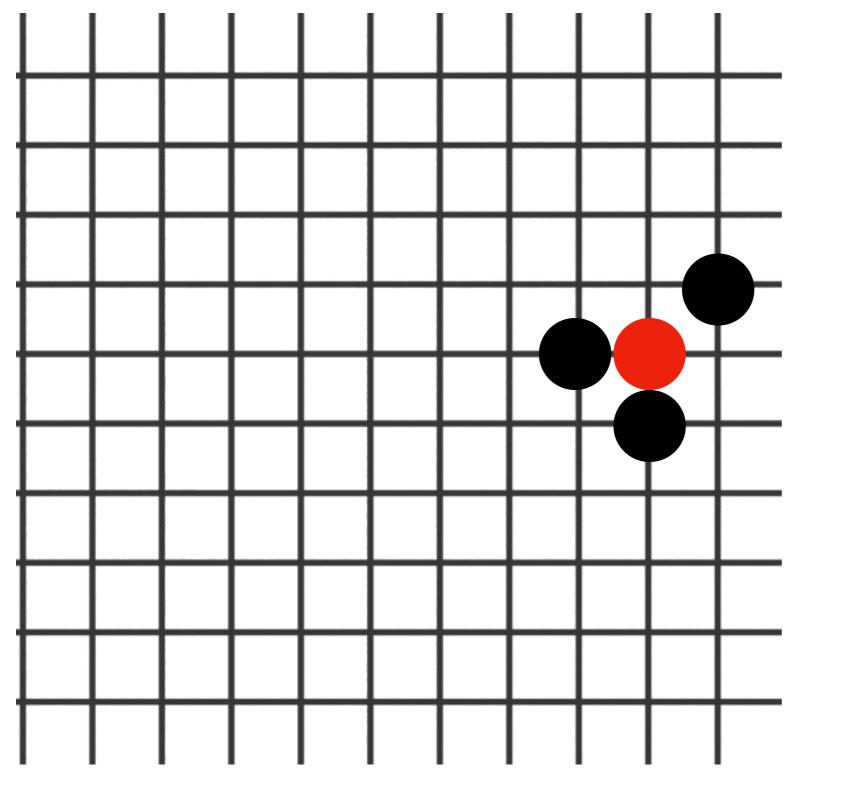


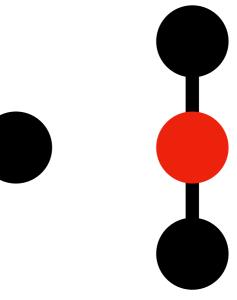










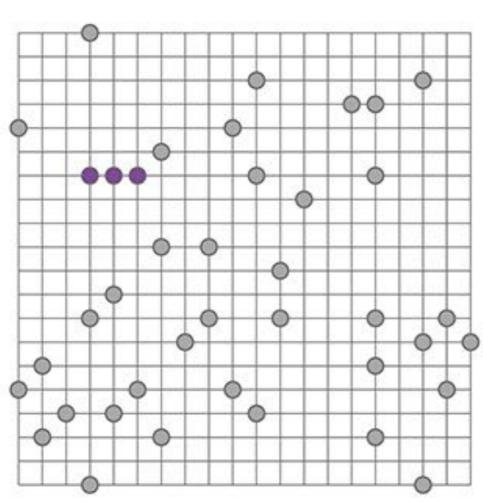


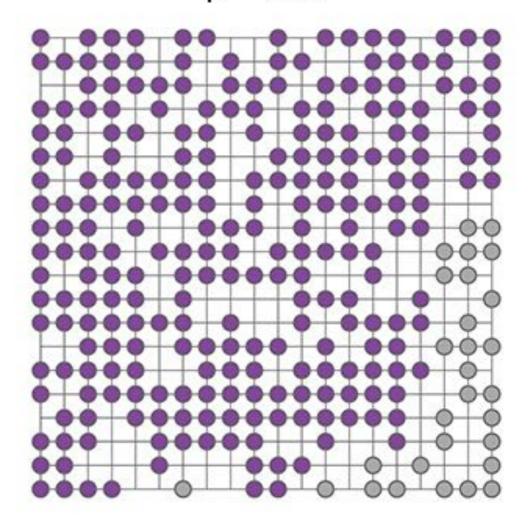
a.

$$p = 0.1$$

b.

$$p = 0.7$$





Cluster size does not grow linearly with p

Average cluster size

$$\langle s \rangle \sim |p - p_c|^{-\gamma_p}$$

Order parameter

$$p_{\infty} \sim (p - p_c)^{\beta_p}$$

Correlation length

$$\xi \sim |p - p_c|^{-\nu}$$

Probability that a randomly chosen pebble belongs to the largest cluster

Average cluster size

$$\langle s \rangle \sim |p - p_c|^{-\gamma_p}$$

Order parameter

$$p_{\infty} \sim (p - p_c)^{\beta_p}$$

Correlation length

$$\xi \sim |p - p_c|^{-\nu}$$

Average distance between two pebbles in the same cluster

Average cluster size

$$\langle s \rangle \sim |p - p_c|^{-\gamma_p}$$

Order parameter

$$p_{\infty} \sim (p - p_c)^{\beta_p}$$

Correlation length

$$\xi \sim |p - p_c|^{-\nu}$$

 p_c Critical probability

 γ_p, β_p, ν Critical exponents

Average cluster size

$$\langle s \rangle \sim |p - p_c|^{-\gamma_p}$$

Order parameter

$$p_{\infty} \sim (p - p_c)^{\beta_p}$$

Correlation length

$$\xi \sim |p - p_c|^{-\nu}$$

Depends on lattice geometry

 p_c Critical probability

 γ_p, β_p, ν Critical exponents

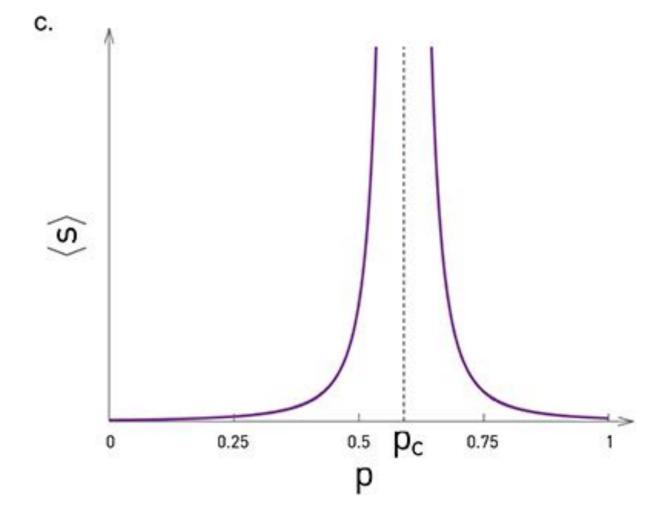
Depend on lattice dimension (eg 2d, 3d) up to 6d

Average cluster size

$$\langle s \rangle \sim |p - p_c|^{-\gamma_p}$$

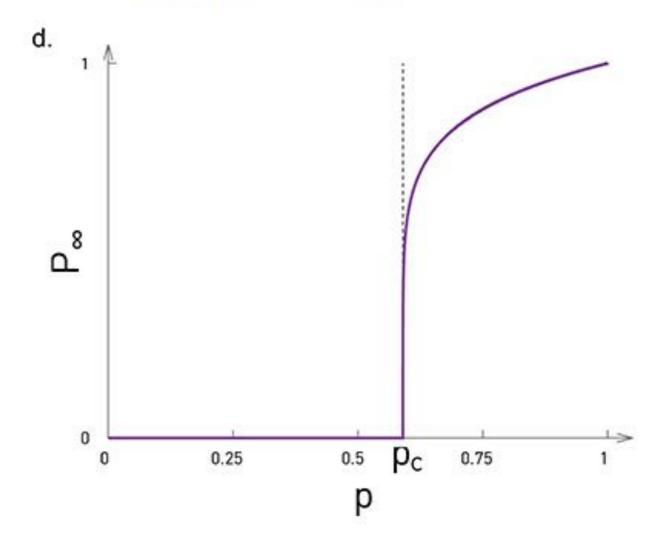
Correlation length

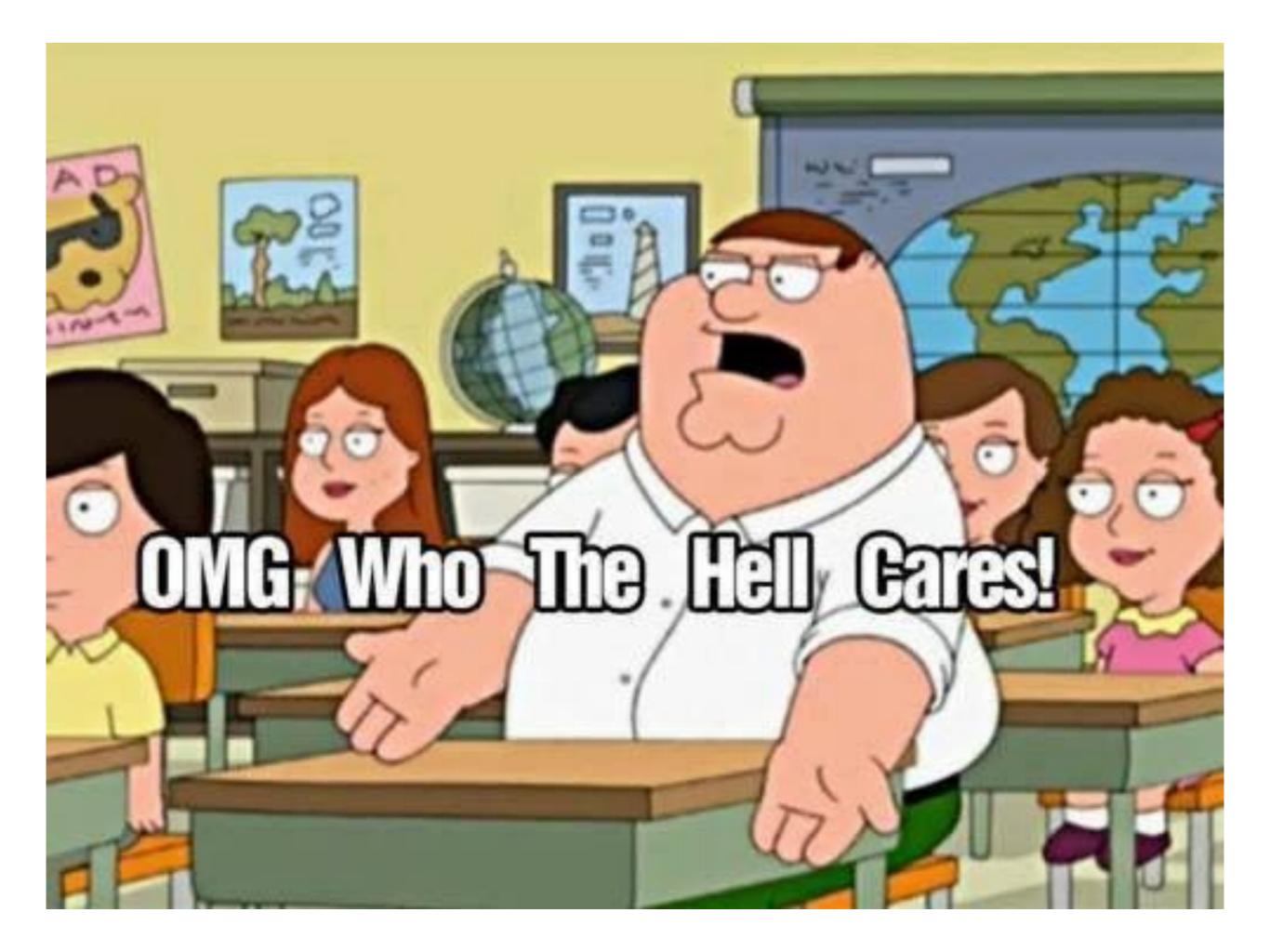
$$\xi \sim |p - p_c|^{-\nu}$$



Order parameter

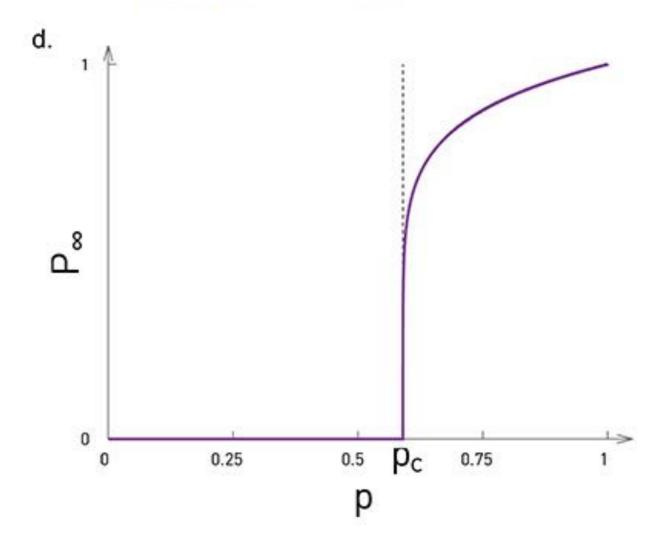
$$p_{\infty} \sim (p - p_c)^{\beta_p}$$





Order parameter

$$p_{\infty} \sim (p - p_c)^{\beta_p}$$



Attacks 0.75 0.5 0.25 0.25 0.75 $f = f_{c}$ = 0.8 $0 < f < f_c$: $f = f_c$: $f > f_c$: The lattice breaks into The giant component There is a giant

component.

vanishes.

many tiny components.

Network structure comparison

What network do you think is more robust?

Network structure comparison

Scale-free networks are more robust*

Most nodes have low degrees

Hubs are highly connected and central

Targeted removal

Robustness of different networks

Targeting strategies

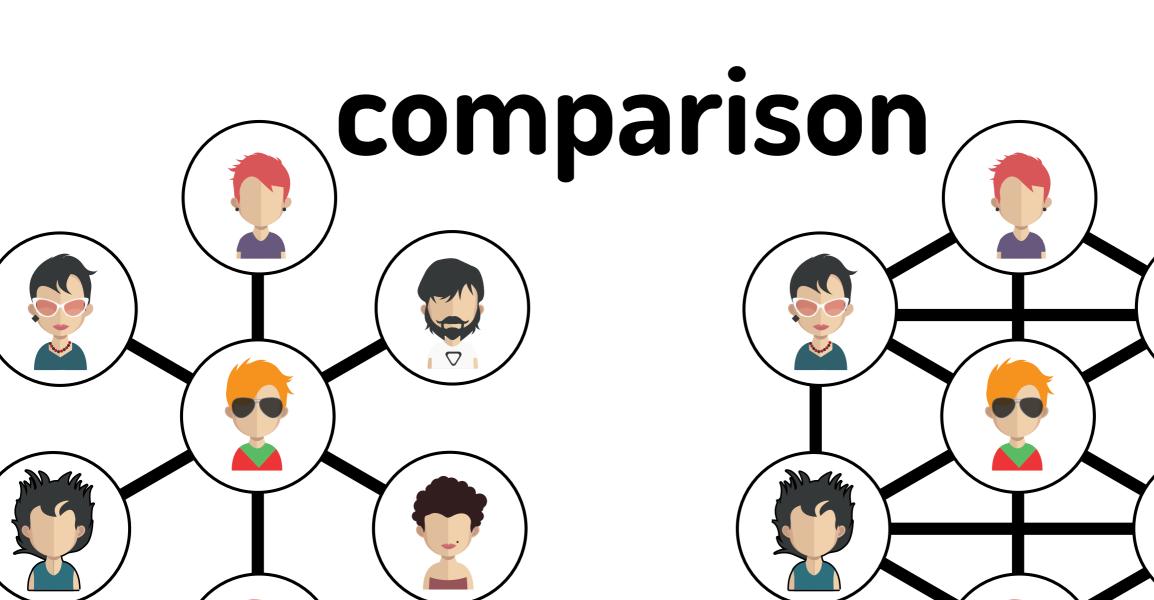
Financial networks and systemic risk

Targeted removal

If we consider targeted attacks everything changes!

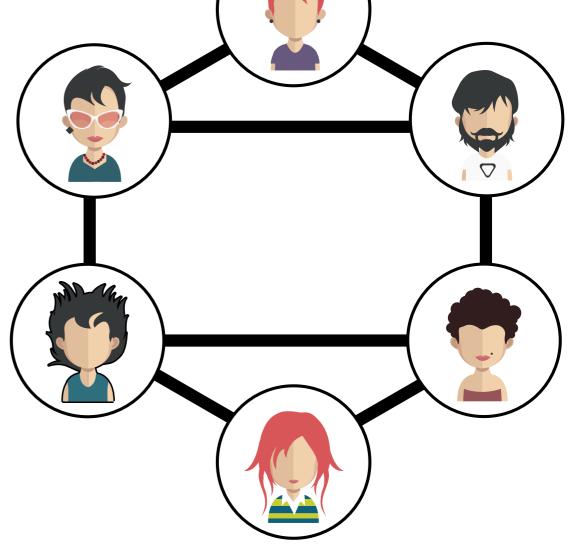
Hubs are highly connected and central

Network structure



Network structure

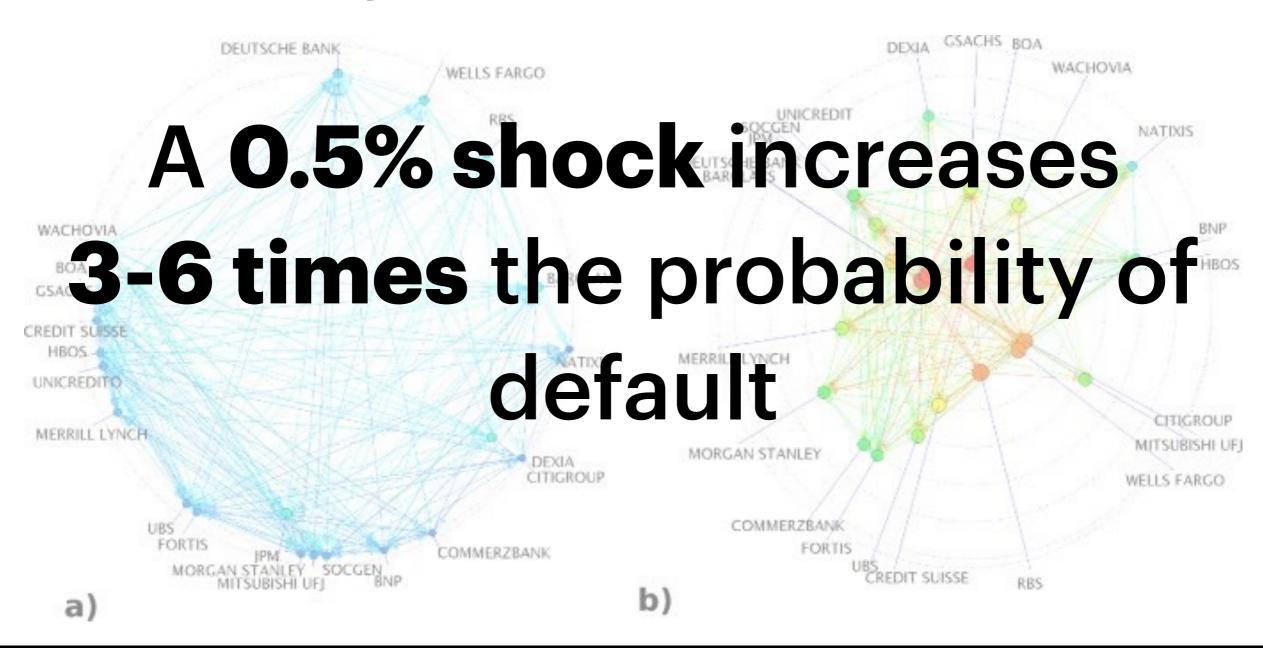
comparison



Example: Systemic risk

risk that default or stress of one or more financial institutions ("banks") will trigger default or stress of further banks.

Systemic risk



Battiston, S., Puliga, M., Kaushik, R. et al. DebtRank: Too Central to Fail? Financial Networks, the FED and Systemic Risk. Sci Rep 2, 541 (2012). https://doi.org/10.1038/srep00541

Think of a topic you like

Think of a topic you like

Think of an example of maximising/minimising propagation

Influence maximisation

Selection of k nodes that best trigger a cascade

Heuristic strategies

Rule of thumb strategies that make sense

Heuristic strategies

What are some easy strategies that you think would be effective?

First "influence maximisation" algorithm

Greedy algorithm - Theoretical guarantee

Works well with unrealistic assumptions

Algorithm 1 Greedy Approximation Algorithm

- 1: Start with $A = \emptyset$.
- 2: while $|A| \leq k$ do
- For each node x, use repeated sampling to approximate $\sigma(A \cup \{x\})$ to within $(1 \pm \varepsilon)$ with probability 1δ .
- 4: Add the node with largest estimate for $\sigma(A \cup \{x\})$ to A.
- 5: end while
- 6: Output the set A of nodes.

Set of nodes

Algorithm Freedy Approximation Algorithm

- 1: Start with $A = \emptyset$.
- 2: while $|A| \leq k$ do
- For each node x, use repeated sampling to approximate $\sigma(A \cup \{x\})$ to within $(1 \pm \varepsilon)$ with probability 1δ .
- 4: Add the node with largest estimate for $\sigma(A \cup \{x\})$ to A.
- 5: end while
- 6: Output the set A of nodes.

Kempe et al Maximum n. of nodes in seed

Set of nodes

Algorithm 1 Greedy Approximation Algorithm

- 1: Start with A =
- 2: while $|A| \leq k \overline{\mathbf{do}}$
- For each node x, use repeated sampling to approximate $\sigma(A \cup \{x\})$ to within $(1 \pm \varepsilon)$ with proba-3: bility $1 - \delta$.
- Add the node with largest estimate for $\sigma(A \cup \{x\})$ to A.
- 5: end while
- 6: Output the set A of nodes.

Set of nodes Maximum n. of nodes in seed

Algorithm 1 Greedy Approximation Algorithm

- 1: Start with A = I
- 2: while $|A| \leq k$ do
- For each node x, use repeated sampling to approximate $\sigma(A \cup \{x\})$ to within $(1 \pm \varepsilon)$ with probability 1δ .
- 4: Add the node with largest estimate for $\sigma(A \cup \{x\})$ to A.
- 5: end while
- 6: Output the set A of nodes.

Influence of set of nodes a+x

Competitive IM

Two or more parties compete for influence

Classical setting: 2 parties, opposite sides

Easy to study on voter model

$$\Delta_i \frac{dx_i}{dt} = (1 - x_i)(\sum_j a_{ji}x_j + p_{A,i}) - x_i(\sum_j a_{ji}(1 - x_j) + p_{B,i})$$

Probability being in state A

$$\Delta_i \frac{dx_i}{dt} = (1 - x_i)(\sum_j a_{ji}x_j + p_{A,i}) - x_i(\sum_j a_{ji}(1 - x_j) + p_{B,i})$$

Probability being in state A

$$\Delta_i \frac{dx_i}{dt} = (1 - x_i)(\sum_j a_{ji}x_j + p_{A,i}) - x_i(\sum_j a_{ji}(1 - x_j) + p_{B,i})$$

Influence of zealot A

Probability being in state A

$$\Delta_i \frac{dx_i}{dt} = (1 - x_i)(\sum_j a_{ji}x_j + p_{A,i}) - x_i(\sum_j a_{ji}(1 - x_j) + p_{B,i})$$
Influence of zealot A

Influence of neighbours

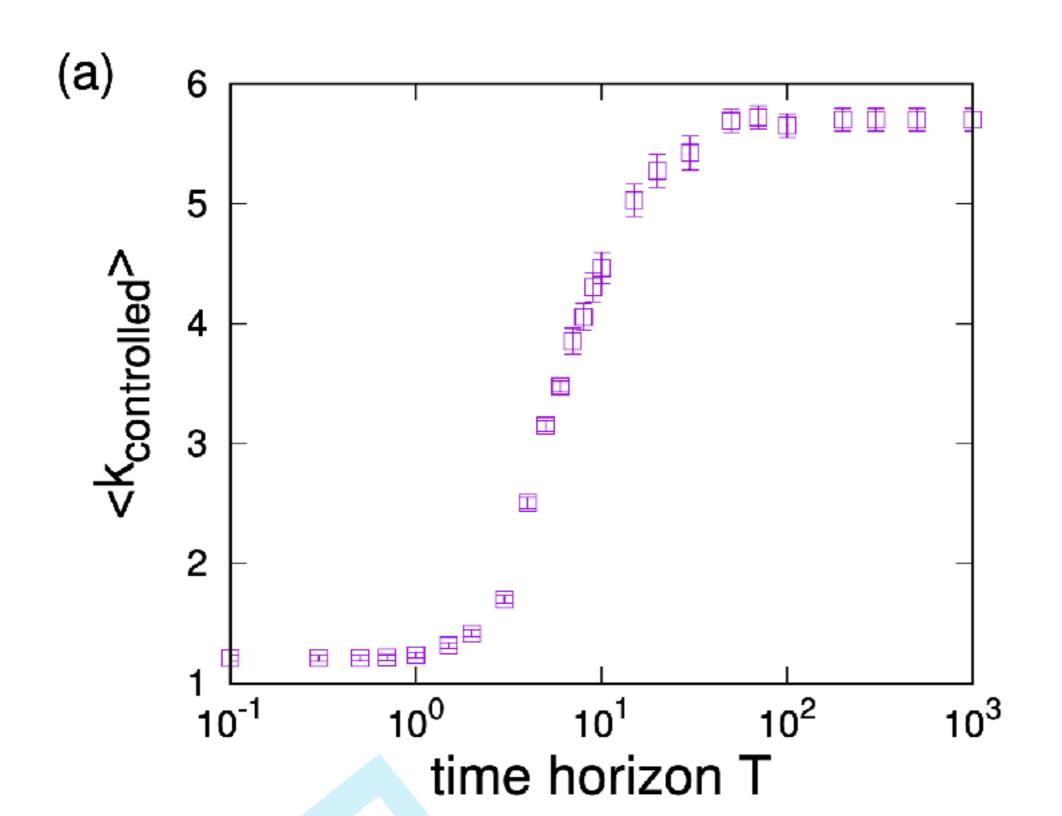
Probability being in state A

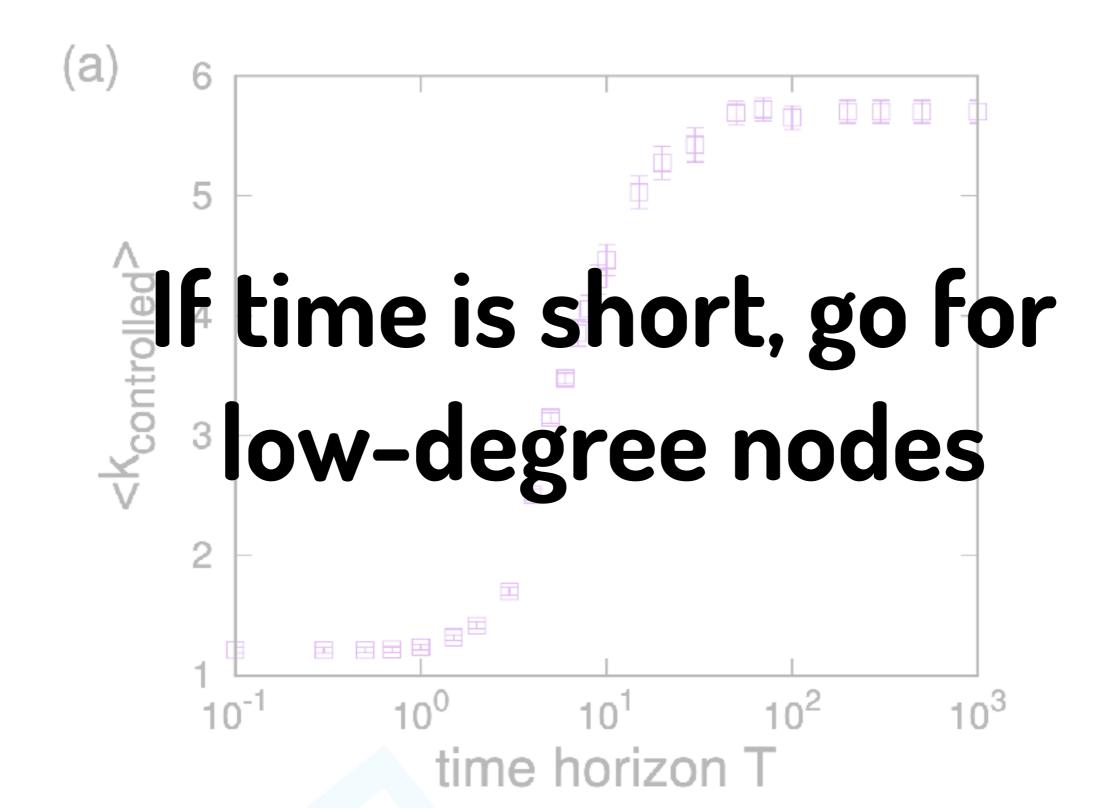
$$\Delta_i \frac{dx_i}{dt} = (1 - x_i)(\sum_j a_{ji}x_j + p_{A,i}) - x_i(\sum_j a_{ji}(1 - x_j) + p_{B,i})$$

Influence of zealot A\
Normalisation factor

Influence of neighbours

$$\Delta_i = \sum_j a_{ji} + p_{A,i} + p_{B,i}$$

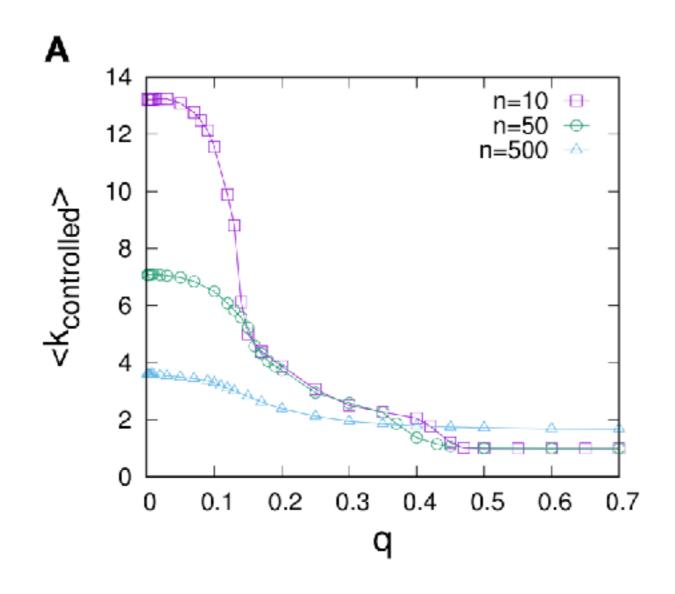




Temporary influence

q = probability of flipping back to pre-influence state

Temporary influence



Scale-free network

Summary

Percolation and its implications **Systemic risk** and instability of finance **Influence maximisation**