Foundations of Natural Language Processing Lecture 5b
 Language Models:
 MLE and the Sparse Data Problem

Alex Lascarides

Probabilities of Word Sequences

Last time:

- Probabilities of word sequences useful for ASR, spelling correction, word prediction (texting) . . .

Now: How do we estimate the likelihood of a sequence of n words from corpus data?

But how to estimate these probabilities?

- We want to know the probability of word sequence $\vec{w}=w_{1} \ldots w_{n}$ occurring in English.
- Assume we have some training data: large corpus of general English text.
- We can use this data to estimate the probability of \vec{w} (even if we never see it in the corpus!)

Probability theory vs estimation

- Probability theory can solve problems like:
- I have a jar with 6 blue marbles and 4 red ones.
- If I choose a marble uniformly at random, what's the probability it's red?

Probability theory vs estimation

- Probability theory can solve problems like:
- I have a jar with 6 blue marbles and 4 red ones.
- If I choose a marble uniformly at random, what's the probability it's red?
- But often we don't know the true probabilities, only have data:
- I have a jar of marbles.
- I repeatedly choose a marble uniformly at random and then replace it before choosing again.
- In ten draws, I get 6 blue marbles and 4 red ones.
- On the next draw, what's the probability I get a red marble?
- First three facts are evidence.
- The question requires estimation theory.

Notation

- I will often omit the random variable in writing probabilities, using $P(x)$ to mean $P(X=x)$.
- When the distinction is important, I will use
- $P(x)$ for true probabilities
- $\hat{P}(x)$ for estimated probabilities
- $P_{\mathrm{E}}(x)$ for estimated probabilities using a particular estimation method E.
- But since we almost always mean estimated probabilities, I may get lazy later and use $P(x)$ for those too.

Example estimation: M\&M colors

What is the proportion of each color of M\&M?

- In 48 packages, I find ${ }^{1} 2620 \mathrm{M} \& M \mathrm{M}$, as follows:

Red	Orange	Yellow	Green	Blue	Brown
372	544	369	483	481	371

- How to estimate probability of each color from this data?

[^0]
Relative frequency estimation

- Intuitive way to estimate discrete probabilities:

$$
P_{\mathrm{RF}}(x)=\frac{C(x)}{N}
$$

where $C(x)$ is the count of x in a large dataset, and
$N=\sum_{x^{\prime}} C\left(x^{\prime}\right)$ is the total number of items in the dataset.

Relative frequency estimation

- Intuitive way to estimate discrete probabilities:

$$
P_{\mathrm{RF}}(x)=\frac{C(x)}{N}
$$

where $C(x)$ is the count of x in a large dataset, and
$N=\sum_{x^{\prime}} C\left(x^{\prime}\right)$ is the total number of items in the dataset.

- $\mathrm{M} \& \mathrm{M}$ example: $P_{\mathrm{RF}}($ red $)=\frac{372}{2620}=.142$
- This method is also known as maximum-likelihood estimation (MLE) for reasons we'll get back to.

MLE for sentences?

Can we use MLE to estimate the probability of \vec{w} as a sentence of English? That is, the prob that some sentence S has words \vec{w} ?

$$
P_{\mathrm{MLE}}(S=\vec{w})=\frac{C(\vec{w})}{N}
$$

where $C(\vec{w})$ is the count of \vec{w} in a large dataset, and N is the total number of sentences in the dataset.

Sentences that have never occurred

the Archaeopteryx soared jaggedly amidst foliage
vs
jaggedly trees the on flew

- Neither ever occurred in a corpus (until I wrote these slides).
$\Rightarrow C(\vec{w})=0$ in both cases: MLE assigns both zero probability.
- But one is grammatical (and meaningful), the other not.
\Rightarrow Using MLE on full sentences doesn't work well for language model estimation.

The problem with MLE

- MLE thinks anything that hasn't occurred will never occur $(P=0)$.
- Clearly not true! Such things can have differering, and non-zero, probabilities:
- My hair turns blue
- I ski a black run
- I travel to Finland
- And similarly for word sequences that have never occurred.

Summary

- Maximum Likelihood Estimate (MLE) approach to learning LMs from data.
- Sparse Data Problem: the training corpus can never be truly representative of all English usage!
Test data may feature word sequences that are absent from training data.
Next Time: We start to deal with the Sparse Data Problem: Assumptions about conditional independence

[^0]: ${ }^{1}$ Data from: https://joshmadison.com/2007/12/02/mms-color-distribution-analysis/

