Foundations of Natural Language Processing Lecture 5c Language Models: Independence Assumptions

Alex Lascarides

LMs, MLE and Sparse Data

So far:

- Language Models are very useful
- Want to learn them from data (empirically grounded)
- Sparse Data Problem: 0 probability estimates for possible sequences.
- the Archaeopteryx soared jaggedly amidst foliage vs
jaggedly trees the on flew
Now: Start to tackle the Sparse Data Problem

Sparse data

- In fact, even things that occur once or twice in our training data are a problem. Remember these words from Europarl?
cornflakes, mathematicians, pseudo-rapporteur, lobby-ridden, Lycketoft, UNCITRAL, policyfor, Commissioneris, 145.95

All occurred once. Is it safe to assume all have equal probability?

- This is a sparse data problem: not enough observations to estimate probabilities well simply by counting observed data. (Unlike the M\&Ms, where we had large counts for all colours!)
- For sentences, many (most!) will occur rarely if ever in our training data. So we need to do something smarter.

Towards better LM probabilities

- One way to try to fix the problem: estimate $P(\vec{w})$ by combining the probabilities of smaller parts of the sentence, which will occur more frequently.
- This is the intuition behind \mathbf{N}-gram language models.

Deriving an N -gram model

- We want to estimate $P\left(S=w_{1} \ldots w_{n}\right)$.
- Ex: $P(S=$ the cat slept quietly).
- This is really a joint probability over the words in S : $P\left(W_{1}=\right.$ the, $W_{2}=$ cat, $W_{3}=$ slept,$\ldots W_{4}=$ quietly $)$.
- Concisely, P (the, cat, slept, quietly) or $P\left(w_{1}, \ldots w_{n}\right)$.

Deriving an N -gram model

- We want to estimate $P\left(S=w_{1} \ldots w_{n}\right)$.
- Ex: $P(S=$ the cat slept quietly).
- This is really a joint probability over the words in S : $P\left(W_{1}=\right.$ the, $W_{2}=$ cat, $W_{3}=$ slept, $\ldots W_{4}=$ quietly $)$.
- Concisely, P (the, cat, slept, quietly) or $P\left(w_{1}, \ldots w_{n}\right)$.
- Recall that for a joint probability, $P(X, Y)=P(Y \mid X) P(X)$. So, $P($ the, cat, slept, quietly $)=P($ quietly \mid the, cat, slept $) P($ the, cat, slept $)$
$=P$ (quietly \mid the, cat, slept $) P($ slept \mid the, cat $) P($ the, cat $)$
$=P($ quietly \mid the, cat, slept $) P($ slept \mid the, cat $) P($ cat \mid the $) P($ the $)$

Deriving an N -gram model

- More generally, the chain rule gives us:

$$
P\left(w_{1}, \ldots w_{n}\right)=\prod_{i=1}^{n} P\left(w_{i} \mid w_{1}, w_{2}, \ldots w_{i-1}\right)
$$

- But many of these conditional probs are just as sparse!
- If we want P (I spent three years before the mast)...
- we still need P (mast \mid spent three years before the).

Deriving an N -gram model

- So we make an independence assumption: the probability of a word only depends on a fixed number of previous words (history).
- trigram model: $P\left(w_{i} \mid w_{1}, w_{2}, \ldots w_{i-1}\right) \approx P\left(w_{i} \mid w_{i-2}, w_{i-1}\right)$
- bigram model: $P\left(w_{i} \mid w_{1}, w_{2}, \ldots w_{i-1}\right) \approx P\left(w_{i} \mid w_{i-1}\right)$
- unigram model: $P\left(w_{i} \mid w_{1}, w_{2}, \ldots w_{i-1}\right) \approx P\left(w_{i}\right)$
- In our example, a trigram model says
$-P($ mast $\mid I$ spent three years before the $) \approx P($ mast \mid before the $)$

Trigram independence assumption

- Put another way, trigram model assumes these are all equal:
- P (mast $\mid I$ spent three years before the)
- P (mast $\mid I$ went home before the)
- P (mast|I saw the sail before the)
- P (mast|l revised all week before the)
because all are estimated as P (mast|before the)
- Not always a good assumption! But it does reduce the sparse data problem.

Estimating trigram conditional probs

- We still need to estimate P (mast|before, the): the probability of mast given the two-word history before, the.
- If we use relative frequencies (MLE), we consider:
- Out of all cases where we saw before, the as the first two words of a trigram,
- how many had mast as the third word?

Estimating trigram conditional probs

- So, in our example, we'd estimate

$$
P_{M L E}(\text { mast } \mid \text { before }, \text { the })=\frac{C(\text { before, the }, \text { mast })}{C(\text { before }, \text { the })}
$$

where $C(x)$ is the count of x in our training data.

- More generally, for any trigram we have

$$
P_{M L E}\left(w_{i} \mid w_{i-2}, w_{i-1}\right)=\frac{C\left(w_{i-2}, w_{i-1}, w_{i}\right)}{C\left(w_{i-2}, w_{i-1}\right)}
$$

Example from Moby Dick corpus

$$
\begin{aligned}
C(\text { before }, \text { the }) & =55 \\
\text { fore, } \text { the } \text { mast }) & =4
\end{aligned} \quad \frac{C(\text { before, } \text { the }, \text { mast })}{C(\text { before }, \text { the })}=0.0727
$$

- mast is the second most common word to come after before the in Moby Dick; wind is the most frequent word.
- $P_{M L E}($ mast $)$ is 0.00049 , and $P_{M L E}($ mast \mid the $)$ is 0.0029 .
- So seeing before the vastly increases the probability of seeing mast next.

Trigram model: summary

- To estimate $P(\vec{w})$, use chain rule and make an indep. assumption:

$$
\begin{aligned}
P\left(w_{1}, \ldots w_{n}\right) & =\prod_{i=1}^{n} P\left(w_{i} \mid w_{1}, w_{2}, \ldots w_{i-1}\right) \\
& \approx P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) \prod_{i=3}^{n} P\left(w_{i} \mid w_{i-2}, w_{w-1}\right)
\end{aligned}
$$

- Then estimate each trigram prob from data (here, using MLE):

$$
P_{M L E}\left(w_{i} \mid w_{i-2}, w_{i-1}\right)=\frac{C\left(w_{i-2}, w_{i-1}, w_{i}\right)}{C\left(w_{i-2}, w_{i-1}\right)}
$$

- On your own: work out the equations for other N-grams (e.g., bigram, unigram).

Practical details (1)

- Trigram model assumes two word history:

$$
P(\vec{w})=P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) \prod_{i=3}^{n} P\left(w_{i} \mid w_{i-2}, w_{w-1}\right)
$$

- But consider these sentences:

	w_{1}	w_{2}	w_{3}	w_{4}
(1)	he	saw	the	yellow
(2)	feeds	the	cats	daily

- What's wrong? Does the model capture these problems?

Beginning/end of sequence

- To capture behaviour at beginning/end of sequences, we can augment the input:

	w_{-1}	w_{0}	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}
(1)	$<$ s $>$	$<$ s $>$	he	saw	the	yellow	$</ \mathrm{s}\rangle$
(2)	$<$ s $>$	$<$ s $>$	feeds	the	cats	daily	$</ \mathrm{s}>$

- That is, assume $w_{-1}=w_{0}=\langle s\rangle$ and $w_{n+1}=\langle/ \mathbf{s}\rangle$ so:

$$
P(\vec{w})=\prod_{i=1}^{n+1} P\left(w_{i} \mid w_{i-2}, w_{i-1}\right)
$$

- Now, $P(</ \mathrm{s}\rangle \mid$ the , yellow $)$ is low, indicating this is not a good sentence.

Beginning/end of sequence

- Alternatively, we could model all sentences as one (very long) sequence, including punctuation:
two cats live in sam 's barn . sam feeds the cats daily . yesterday, he saw the yellow cat catch a mouse . [...]
- Now, trigrams like $P(. \mid$ cats daily $)$ and $P(, \mid$. yesterday $)$ tell us about behavior at sentence edges.
- Here, all tokens are lowercased. What are the pros/cons of not doing that?

Practical details (2)

- Word probabilities are typically very small.
- Multiplying lots of small probabilities quickly gets so tiny we can't represent the numbers accurately, even with double precision floating point.
- So in practice, we typically use negative log probabilities (sometimes called costs):
- Since probabilities range from 0 to 1 , negative log probs range from 0 to ∞ : lower cost $=$ higher probability.
- Instead of multiplying probabilities, we add neg log probabilities.

Summary

- Probabilities of word sequences of arbitrary length are useful in many natural language applications.
- We can never know the true probability, but we may be able to estimate it from corpus data.
- N-gram models are one way to do this:
- To alleviate sparse data, assume word probs depend only on short history.
- Tradeoff: longer histories may capture more, but are also more sparse.
- So far, we estimated N-gram probabilites using MLE.

Coming up next

- Weaknesses of MLE and ways to address them (more issues with sparse data).
- How to evaluate a language model: are we estimating sentence probabilities accurately?

