Foundations of Natural Language Processing Lecture 5 N-gram language models

Alex Lascarides

Recap

- Last time, we talked about corpus data and some of the information we can get from it, like word frequencies.
- For some tasks, like sentiment analysis, word frequencies alone can work pretty well (though can certainly be improved on).
- For other tasks, we need more.
- Today: we consider **sentence probabilities**: what are they, why are they useful, and how might we compute them?

Intuitive interpretation

- "Probability of a sentence" = how likely is it to occur in natural language
 - Consider only a specific language (English)
 - Not including meta-language (e.g. linguistic discussion)

P(the cat slept peacefully) > P(slept the peacefully cat)

P(she studies morphosyntax) > P(she studies more faux syntax)

Language models in NLP

- It's very difficult to know the true probability of an arbitrary sequence of words.
- But we can define a language model that will give us good approximations.
- Like all models, language models will be good at capturing some things and less good for others.
 - We might want different models for different tasks.
 - Today, one type of language model: an N-gram model.

Spelling correction

Sentence probabilities help decide correct spelling.

mis-spelled text

the possible outputs

possible outputs

the possible output the possib

Automatic speech recognition

Sentence probabilities help decide between similar-sounding options. speech input

↓ (Acoustic model)

possible outputs

She studies morphosyntax
She studies more faux syntax
She's studies morph or syntax

• • •

 \downarrow (Language model)

best-guess output

She studies morphosyntax

Machine translation

Sentence probabilities help decide word choice and word order.

onn-English input

↓ (Translation model)

possible outputs

She is going home
She is going house
She is travelling to home
To home she is going
...

↓ (Language model)

She is going home

LMs for prediction

- LMs can be used for **prediction** as well as correction.
- Ex: predictive text correction/completion on your mobile phone.
 - Keyboard is tiny, easy to touch a spot slightly off from the letter you meant.
 - Want to correct such errors as you go, and also provide possible completions.
 Predict as you are typing: ineff...
- In this case, LM may be defined over sequences of *characters* instead of (or in addition to) sequences of words.

But how to estimate these probabilities?

- We want to know the probability of word sequence $\vec{w} = w_1 \dots w_n$ occurring in English.
- Assume we have some training data: large corpus of general English text.
- We can use this data to **estimate** the probability of \vec{w} (even if we never see it in the corpus!)

Probability theory vs estimation

- Probability theory can solve problems like:
 - I have a jar with 6 blue marbles and 4 red ones.
 - If I choose a marble uniformly at random, what's the probability it's red?

Probability theory vs estimation

- Probability theory can solve problems like:
 - I have a jar with 6 blue marbles and 4 red ones.
 - If I choose a marble uniformly at random, what's the probability it's red?
- But often we don't know the true probabilities, only have data:
 - I have a jar of marbles.
 - I repeatedly choose a marble uniformly at random and then replace it before choosing again.
 - In ten draws, I get 6 blue marbles and 4 red ones.
 - On the next draw, what's the probability I get a red marble?
- First three facts are evidence.
- The question requires estimation theory.

Notation

- I will often omit the random variable in writing probabilities, using P(x) to mean P(X=x).
- When the distinction is important, I will use
 - -P(x) for *true* probabilities
 - $-\hat{P}(x)$ for estimated probabilities
 - $P_{\rm E}(x)$ for estimated probabilities using a particular estimation method E.
- ullet But since we almost always mean estimated probabilities, I may get lazy later and use P(x) for those too.

Example estimation: M&M colors

What is the proportion of each color of M&M?

• In 48 packages, I find¹ 2620 M&Ms, as follows:

Red	Orange	Yellow	Green	Blue	Brown
372	544	369	483	481	371

How to estimate probability of each color from this data?

¹Data from: https://joshmadison.com/2007/12/02/mms-color-distribution-analysis/

Relative frequency estimation

• Intuitive way to estimate discrete probabilities:

$$P_{\rm RF}(x) = \frac{C(x)}{N}$$

where C(x) is the count of x in a large dataset, and $N = \sum_{x'} C(x')$ is the total number of items in the dataset.

Relative frequency estimation

Intuitive way to estimate discrete probabilities:

$$P_{\rm RF}(x) = \frac{C(x)}{N}$$

where C(x) is the count of x in a large dataset, and $N = \sum_{x'} C(x')$ is the total number of items in the dataset.

- M&M example: $P_{RF}(red) = \frac{372}{2620} = .142$
- This method is also known as **maximum-likelihood estimation** (MLE) for reasons we'll get back to.

MLE for sentences?

Can we use MLE to estimate the probability of \vec{w} as a sentence of English? That is, the probability some sentence S has words \vec{w} ?

$$P_{\text{MLE}}(S = \vec{w}) = \frac{C(\vec{w})}{N}$$

where $C(\vec{w})$ is the count of \vec{w} in a large dataset, and N is the total number of sentences in the dataset.

Sentences that have never occurred

the Archaeopteryx soared jaggedly amidst foliage
vs
jaggedly trees the on flew

- Neither ever occurred in a corpus (until I wrote these slides). $\Rightarrow C(\vec{w}) = 0$ in both cases: MLE assigns both zero probability.
- But one is grammatical (and meaningful), the other not.
 ⇒ Using MLE on full sentences doesn't work well for language model estimation.

The problem with MLE

- MLE thinks anything that hasn't occurred will never occur (P=0).
- Clearly not true! Such things can have differering, and non-zero, probabilities:
 - My hair turns blue
 - I ski a black run
 - I travel to Finland
- And similarly for word sequences that have never occurred.

Sparse data

• In fact, even things that occur once or twice in our training data are a problem. Remember these words from Europarl?

cornflakes, mathematicians, pseudo-rapporteur, lobby-ridden, Lycketoft, UNCITRAL, policyfor, Commissioneris, 145.95

All occurred once. Is it safe to assume all have equal probability?

- This is a **sparse data** problem: not enough observations to estimate probabilities well simply by counting observed data. (Unlike the M&Ms, where we had large counts for all colours!)
- For sentences, many (most!) will occur rarely if ever in our training data. So we need to do something smarter.

Towards better LM probabilities

- One way to try to fix the problem: estimate $P(\vec{w})$ by combining the probabilities of smaller parts of the sentence, which will occur more frequently.
- This is the intuition behind **N-gram language models**.

- We want to estimate $P(S = w_1 \dots w_n)$.
 - Ex: P(S = the cat slept quietly).
- This is really a joint probability over the words in S: $P(W_1 = \text{the}, W_2 = \text{cat}, W_3 = \text{slept}, \dots W_4 = \text{quietly}).$
- Concisely, P(the, cat, slept, quietly) or $P(w_1, \dots w_n)$.

- We want to estimate $P(S = w_1 \dots w_n)$.
 - Ex: P(S = the cat slept quietly).
- This is really a joint probability over the words in S: $P(W_1 = \text{the}, W_2 = \text{cat}, W_3 = \text{slept}, \dots W_4 = \text{quietly}).$
- Concisely, P(the, cat, slept, quietly) or $P(w_1, \dots w_n)$.
- ullet Recall that for a joint probability, P(X,Y)=P(Y|X)P(X). So,

```
P(\text{the, cat, slept}) = P(\text{quietly}|\text{the, cat, slept})P(\text{the, cat, slept})
```

- = P(quietly|the, cat, slept)P(slept|the, cat)P(the, cat)
- = P(quietly|the, cat, slept)P(slept|the, cat)P(cat|the)P(the)

More generally, the chain rule gives us:

$$P(w_1, \dots w_n) = \prod_{i=1}^n P(w_i|w_1, w_2, \dots w_{i-1})$$

- But many of these conditional probs are just as sparse!
 - If we want P(I spent three years before the mast)...
 - we still need P(mast|I spent three years before the).

- So we make an **independence assumption**: the probability of a word only depends on a fixed number of previous words (**history**).
 - trigram model: $P(w_i|w_1, w_2, \dots w_{i-1}) \approx P(w_i|w_{i-2}, w_{i-1})$
 - bigram model: $P(w_i|w_1, w_2, ... w_{i-1}) \approx P(w_i|w_{i-1})$
 - unigram model: $P(w_i|w_1, w_2, \dots w_{i-1}) \approx P(w_i)$
- In our example, a trigram model says
 - $P(\text{mast}|\text{I spent three years before the}) \approx P(\text{mast}|\text{before the})$

Trigram independence assumption

- Put another way, trigram model assumes these are all equal:
 - P(mast|I spent three years before the)
 - P(mast|I went home before the)
 - P(mast|I saw the sail before the)
 - P(mast|I revised all week before the)

because all are estimated as P(mast|before the)

Not always a good assumption! But it does reduce the sparse data problem.

Estimating trigram conditional probs

- We still need to estimate P(mast|before, the): the probability of mast given the two-word history before, the.
- If we use relative frequencies (MLE), we consider:
 - Out of all cases where we saw before, the as the first two words of a trigram,
 - how many had mast as the third word?

Estimating trigram conditional probs

• So, in our example, we'd estimate

$$P_{MLE}(\text{mast}|\text{before, the}) = \frac{C(\text{before, the, mast})}{C(\text{before, the})}$$

where C(x) is the count of x in our training data.

• More generally, for any trigram we have

$$P_{MLE}(w_i|w_{i-2},w_{i-1}) = \frac{C(w_{i-2},w_{i-1},w_i)}{C(w_{i-2},w_{i-1})}$$

Example from Moby Dick corpus

$$C(\mathit{before}, \mathit{the}) = 55$$
 $C(\mathit{before}, \mathit{the}, \mathit{mast}) = 4$

$$\frac{C(\textit{before}, \textit{the}, \textit{mast})}{C(\textit{before}, \textit{the})} = 0.0727$$

- mast is the second most common word to come after before the in Moby Dick;
 wind is the most frequent word.
- $P_{MLE}(mast)$ is 0.00049, and $P_{MLE}(mast|the)$ is 0.0029.
- So seeing before the vastly increases the probability of seeing mast next.

Trigram model: summary

• To estimate $P(\vec{w})$, use chain rule and make an indep. assumption:

$$P(w_1, \dots w_n) = \prod_{i=1}^n P(w_i|w_1, w_2, \dots w_{i-1})$$

$$\approx P(w_1)P(w_2|w_1) \prod_{i=3}^n P(w_i|w_{i-2}, w_{w-1})$$

Then estimate each trigram prob from data (here, using MLE):

$$P_{MLE}(w_i|w_{i-2},w_{i-1}) = \frac{C(w_{i-2},w_{i-1},w_i)}{C(w_{i-2},w_{i-1})}$$

 \bullet On your own: work out the equations for other N-grams (e.g., bigram, unigram).

Practical details (1)

• Trigram model assumes two word history:

$$P(\vec{w}) = P(w_1)P(w_2|w_1)\prod_{i=3}^{n} P(w_i|w_{i-2}, w_{w-1})$$

• But consider these sentences:

$$w_1$$
 w_2 w_3 w_4
(1) he saw the yellow
(2) feeds the cats daily

What's wrong? Does the model capture these problems?

Beginning/end of sequence

 To capture behaviour at beginning/end of sequences, we can augment the input:

$$w_{-1}$$
 w_0 w_1 w_2 w_3 w_4 w_5
(1) $<$ s> $<$ s> he saw the yellow $<$ /s>
(2) $<$ s> $<$ s> feeds the cats daily $<$ /s>

• That is, assume $w_{-1}=w_0=$ <s> and $w_{n+1}=$ </s> so:

$$P(\vec{w}) = \prod_{i=1}^{n+1} P(w_i|w_{i-2}, w_{i-1})$$

• Now, P(</s>|the, yellow) is low, indicating this is not a good sentence.

Beginning/end of sequence

 Alternatively, we could model all sentences as one (very long) sequence, including punctuation:

```
two cats live in sam 's barn . sam feeds the cats daily . yesterday , he saw the yellow cat catch a mouse . [...]
```

- ullet Now, trigrams like $P(.|{\tt cats\ daily})$ and $P(,|.\ {\tt yesterday})$ tell us about behavior at sentence edges.
- Here, all tokens are lowercased. What are the pros/cons of not doing that?

Practical details (2)

- Word probabilities are typically very small.
- Multiplying lots of small probabilities quickly gets so tiny we can't represent the numbers accurately, even with double precision floating point.
- So in practice, we typically use negative log probabilities (sometimes called costs):
 - Since probabilities range from 0 to 1, negative log probs range from 0 to ∞ : lower cost = higher probability.
 - Instead of *multiplying* probabilities, we *add* neg log probabilities.

Summary

- "Probability of a sentence": how likely is it to occur in natural language? Useful in many natural language applications.
- We can never know the true probability, but we may be able to estimate it from corpus data.
- N-gram models are one way to do this:
 - To alleviate sparse data, assume word probs depend only on short history.
 - Tradeoff: longer histories may capture more, but are also more sparse.
 - So far, we estimated N-gram probabilites using MLE.

Coming up next

- Weaknesses of MLE and ways to address them (more issues with sparse data).
- How to evaluate a language model: are we estimating sentence probabilities accurately?