Recap

How do we evaluate Language Models?

- **Language models** tell us $P(\vec{w}) = P(w_1 \ldots w_n)$.

- We can’t evaluate an LM with accuracy metrics.

- Entropy, however, measures confidence in the model’s predictions of a random variable X:
 \[
 H(X) = -\sum_{x \in X} Pr(x) \log_2(x)
 \]

Now: Evaluation II

- What entropy ‘means’

- Details on how to use entropy to evaluate LMs.
Entropy as y/n questions (hence \log_2)

How many yes-no questions (bits) do we need to find out the outcome?

- Uniform distribution with 2^n outcomes: n yes-no questions.
Entropy as encoding sequences

• Assume that we want to encode a sequence of events X.

• Each event is encoded by a sequence of bits, we want to use as few bits as possible.

• For example
 – Coin flip: heads = 0, tails = 1
 – 4 equally likely events: $a = 00$, $b = 01$, $c = 10$, $d = 11$
 – 3 events, one more likely than others: $a = 0$, $b = 10$, $c = 11$
 – Morse code: e has shorter code than q

• Average number of bits needed to encode $X \geq$ entropy of X
The Entropy of English

• Given the start of a text, can we guess the next word?

• For humans, the measured entropy is only about 1.3.
 – Meaning: on average, given the preceding context, a human would need only 1.3 y/n questions to determine the next word.
 – This is an upper bound on the true entropy, which we can never know (because we don't know the true probability distribution).

• But what about N-gram models?
Coping with not knowing true probs: Cross-entropy

• Our LM estimates the probability of word sequences.

• A good model assigns high probability to sequences that actually have high probability (and low probability to others).

• Put another way, our model should have low uncertainty (entropy) about which word comes next.

• Cross entropy measures how close \hat{P} is to true P:

$$H(P, \hat{P}) = \sum_x -P(x) \log_2 \hat{P}(x)$$

• Note that cross-entropy \geq entropy: our model’s uncertainty can be no less than the true uncertainty.

• But still don’t know $P(x)$...
Coping with Estimates: Compute per word cross-entropy

- For $w_1 \ldots w_n$ with large n, per-word cross-entropy is well approximated by:

$$H_M(w_1 \ldots w_n) = -\frac{1}{n} \log_2 P_M(w_1 \ldots w_n)$$

- This is just the average negative log prob our model assigns to each word in the sequence. (i.e., normalized for sequence length).

- Lower cross-entropy \Rightarrow model is better at predicting next word.
Cross-entropy example

Using a bigram model from Moby Dick, compute per-word cross-entropy of I spent three years before the mast (here, without using end-of-sentence padding):

\[-\frac{1}{7} \left(\log_2(P(I)) + \log_2(P(spent|I)) + \log_2(P(three|spent)) + \log_2(P(years|three)) \\
+ \log_2(P(before|years)) + \log_2(P(the|before)) + \log_2(P(mast|the)) \right) \]

\[= -\frac{1}{7} \left(-6.9381 - 11.0546 - 3.1699 - 4.2362 - 5.0 - 2.4426 - 8.4246 \right) \]

\[= -\frac{1}{7} \left(41.2660 \right) \]

\[\approx 6 \]

• Per-word cross-entropy of the unigram model is about 11.

• So, unigram model has about 5 bits more uncertainty per word than bigram model. But, what does that mean?
Data compression

• If we designed an optimal code based on our bigram model, we could encode the entire sentence in about 42 bits. 6*7

• A code based on our unigram model would require about 77 bits. 11*7

• ASCII uses an average of 24 bits per word (168 bits total)!

• So better language models can also give us better data compression: as elaborated by the field of information theory.
Perplexity

- LM performance is often reported as **perplexity** rather than cross-entropy.

- Perplexity is simply \(2^{\text{cross-entropy}}\)

- The average branching factor at each decision point, if our distribution were uniform.

- So, 6 bits cross-entropy means our model perplexity is \(2^6 = 64\): equivalent uncertainty to a uniform distribution over 64 outcomes.

Perplexity looks different in J&M 3rd edition because they don’t introduce cross-entropy; I’ll accept either answers!
Interpreting these measures

I measure the cross-entropy of my LM on some corpus as 5.2. Is that good?
Interpreting these measures

I measure the cross-entropy of my LM on some corpus as 5.2. Is that good?

• No way to tell! Cross-entropy depends on both the model and the corpus.
 – Some language is simply more predictable (e.g. casual speech vs academic writing).
 – So lower cross-entropy could mean the corpus is “easy”, or the model is good.

• We can only compare different models on the same corpus.

• Should we measure on training data or held-out data? Why?
Summary

- LMs can be evaluated using **per word cross entropy**.

- Intuitively, this is a measure of:
 - The LMs confidence in its predictions about the next word (averaged over the sequence).
 - The extent to which it has compressed the data necessary for making those predictions.

- But this measure is informative only when comparing the per word cross entropy of two different LMs
 - We don’t have meaningful upper bounds.