
Foundations of Natural Language Processing
Lecture 6c

Language Models: Smoothing

Alex Lascarides

Alex Lascarides FNLP lecture 6



Recap

• LMs are useful for many applications.

• To overcome sparse data, you can use small n in n-gram LMs to predict the
probability of arbitrarily large word sequences.

• We can evaluate the quality of an n-gram LM using per word cross entropy

Now:

• Smoothing: A further strategy for tackling the sparse data problem.

Alex Lascarides FNLP lecture 6 1



Sparse data, again

Suppose now we build a trigram model from Moby Dick and evaluate the same
sentence.

• But I spent three never occurs, so PMLE(three | I spent) = 0

• which means the cross-entropy is infinite.

• Basically right: our model says I spent three should never occur, so our model
is infinitely wrong/surprised when it does!

• Even with a unigram model, we will run into words we never saw before. So
even with short N -grams, we need better ways to estimate probabilities from
sparse data.

Alex Lascarides FNLP lecture 6 2



Smoothing

• The flaw of MLE: it estimates probabilities that make the training data
maximally probable, by making everything else (unseen data) minimally
probable.

• Smoothing methods address the problem by stealing probability mass from
seen events and reallocating it to unseen events.

• Lots of different methods, based on different kinds of assumptions. We will
discuss just a few.

Alex Lascarides FNLP lecture 6 3



Add-One (Laplace) Smoothing

• Just pretend we saw everything one more time than we did.

PMLE(wi|wi−2, wi−1) =
C(wi−2, wi−1, wi)

C(wi−2, wi−1)

⇒ P+1(wi|wi−2, wi−1) =
C(wi−2, wi−1, wi) + 1

C(wi−2, wi−1)
?

Alex Lascarides FNLP lecture 6 4



Add-One (Laplace) Smoothing

• Just pretend we saw everything one more time than we did.

PMLE(wi|wi−2, wi−1) =
C(wi−2, wi−1, wi)

C(wi−2, wi−1)

⇒ P+1(wi|wi−2, wi−1) =
C(wi−2, wi−1, wi) + 1

C(wi−2, wi−1)
?

• NO! Sum over possible wi (in vocabulary V ) must equal 1:∑
wi∈V

P (wi|wi−2, wi−1) = 1

• If increasing the numerator, must change denominator too.

Alex Lascarides FNLP lecture 6 5



Add-one Smoothing: normalization

• We want:
∑
wi∈V

C(wi−2, wi−1, wi) + 1

C(wi−2, wi−1) + x
= 1

• Solve for x: ∑
wi∈V

(C(wi−2, wi−1, wi) + 1) = C(wi−2, wi−1) + x

∑
wi∈V

C(wi−2, wi−1, wi) +
∑
wi∈V

1 = C(wi−2, wi−1) + x

C(wi−2, wi−1) + v = C(wi−2, wi−1) + x

v = x

where v = vocabulary size.

Alex Lascarides FNLP lecture 6 6



Add-one example (1)

• Moby Dick has one trigram that begins with I spent (it’s I spent in) and the
vocabulary size is 17231.

• Comparison of MLE vs Add-one probability estimates:

MLE +1 Estimate

P̂ (three | I spent) 0 0.00006

P̂ (in | I spent) 1 0.0001

• P̂ (in|I spent) seems very low, especially since in is a very common word. But
can we find better evidence that this method is flawed?

Alex Lascarides FNLP lecture 6 7



Add-one example (2)

• Suppose we have a more common bigram w1, w2 that occurs 100 times, 10 of
which are followed by w3.

MLE +1 Estimate

P̂ (w3|w1, w2)
10
100

11
17331

≈ 0.0006

• Shows that the very large vocabulary size makes add-one smoothing steal way
too much from seen events.

• In fact, MLE is pretty good for frequent events, so we shouldn’t want to
change these much.

Alex Lascarides FNLP lecture 6 8



Add-α (Lidstone) Smoothing

• We can improve things by adding α < 1.

P+α(wi|wi−1) =
C(wi−1, wi) + α

C(wi−1) + αv

• Like Laplace, assumes we know the vocabulary size in advance.

• But if we don’t, can just add a single “unknown” (UNK) item, and use this
for all unknown words during testing.

• Then: how to choose α?

Alex Lascarides FNLP lecture 6 9



Optimizing α (and other model choices)

• Use a three-way data split: training set (80-90%), held-out (or development)
set (5-10%), and test set (5-10%)

– Train model (estimate probabilities) on training set with different values of
α

– Choose the α that minimizes cross-entropy on development set

– Report final results on test set.

• More generally, use dev set for evaluating different models, debugging, and
optimizing choices. Test set simulates deployment, use it only once!

• Avoids overfitting to the training set and even to the test set.

Alex Lascarides FNLP lecture 6 10



Better smoothing: Good-Turing

• Previous methods changed the denominator, which can have big effects even
on frequent events.

• Good-Turing changes the numerator. Think of it like this:

– MLE divides count c of N -gram by count n of history:

PMLE =
c

n

– Good-Turing uses adjusted counts c∗ instead:

PGT =
c∗

n

Alex Lascarides FNLP lecture 6 11



Good-Turing in Detail

• Push every probability total down to the count class below.

• Each count is reduced slightly (Zipf): we’re discounting!

c Nc Pc Pc[total] c∗ P∗c P ∗c [total]

0 N0 0 0 N1
N0

N1
N0
N

N1
N

1 N1
1
N

N1
N 2N2

N1

2
N2
N1
N

2N2
N

2 N2
2
N

2N2
N 3N3

N2

3
N3
N2
N

3N3
N

• c: count
Nc: number of different items with count c
Pc: MLE estimate of prob. of that item
Pc[total]: MLE total probability mass for all items with that count.
c∗: Good-Turing smoothed version of the count
P∗c and P ∗c [total]: Good-Turing versions of Pc and Pc[total]

Alex Lascarides FNLP lecture 6 12



Some Observations

• Basic idea is to arrange the discounts so that the amount we add to the total
probability in row 0 is matched by all the discounting in the other rows.

• Note that we only know N0 if we actually know what’s missing.

• And we can’t always estimate what words are missing from a corpus.

• But for bigrams, we often assume N0 = V 2 − N , where V is the different
(observed) words in the corpus.

Alex Lascarides FNLP lecture 6 13



Good-Turing Smoothing: The Formulae

Good-Turing discount depends on (real) adjacent count:

c∗ = (c+ 1)
Nc+1
Nc

P∗c = c∗
N

=
(c+1)

Nc+1
Nc

N

• Since counts tend to go down as c goes up, the multiplier is < 1.

• The sum of all discounts is N1
N0

. We need it to be, given that this is our GT
count for row 0!

Alex Lascarides FNLP lecture 6 14



Good-Turing for 2-Grams in Europarl

Count Count of counts Adjusted count Test count

c Nc c∗ tc
0 7,514,941,065 0.00015 0.00016

1 1,132,844 0.46539 0.46235

2 263,611 1.40679 1.39946

3 123,615 2.38767 2.34307

4 73,788 3.33753 3.35202

5 49,254 4.36967 4.35234

6 35,869 5.32928 5.33762

8 21,693 7.43798 7.15074

10 14,880 9.31304 9.11927

20 4,546 19.54487 18.95948

tc are average counts of bigrams in test set that occurred c times in corpus: fairly
close to estimate c∗.

Alex Lascarides FNLP lecture 6 15



Good-Turing justification: 0-count items

• Estimate the probability that the next observation is previously unseen (i.e.,
will have count 1 once we see it)

P (unseen) =
N1

n

This part uses MLE!

• Divide that probability equally amongst all unseen events

PGT =
1

N0

N1

n
⇒ c∗ =

N1

N0

Alex Lascarides FNLP lecture 6 16



Good-Turing justification: 1-count items

• Estimate the probability that the next observation was seen once before (i.e.,
will have count 2 once we see it)

P (once before) =
2N2

n

• Divide that probability equally amongst all 1-count events

PGT =
1

N1

2N2

n
⇒ c∗ =

2N2

N1

• Same thing for higher count items

Alex Lascarides FNLP lecture 6 17



Summary

• We need smoothing to deal with unseen N -grams.

• Add-1 and Add-α are simple,
but may not work very well (it all depends. . . ).

• Good-Turing is more sophisticated,
it may yield better models.

Next time: Alternative, perhaps better, approaches to smoothing.

Alex Lascarides FNLP lecture 6 18


