Foundations of Natural Language Processing Lecture 7a: More smoothing

Alex Lascarides

Recap: Smoothing for language models

- $\bullet~N\mbox{-}gram$ LMs reduce sparsity by assuming each word only depends on a fixed-length history.
- But even this assumption isn't enough: we still encounter lots of unseen N-grams in a test set or new corpus.
- If we use MLE, we'll assign 0 probability to unseen items: useless as an LM.
- **Smoothing** solves this problem: move probability mass from seen items to unseen items.

Smoothing methods so far

- Add- α smoothing: ($\alpha = 1$ or < 1) very simple, but no good when vocabulary size is large.
- Good-Turing smoothing:
 - estimate the probability of seeing (any) item with N_c counts (e.g., 0 count) as the proportion of items already seen with N_{c+1} counts (e.g., 1 count).
 - Divide that probability evenly between all possible items with N_c counts.

Good-Turing smoothing

• If n is count of history, then $P_{GT} = \frac{c^*}{n}$ where

$$c^* = (c+1)\frac{N_{c+1}}{N_c}$$

- N_c number of N-grams that occur exactly c times in corpus
- N_0 total number of unseen N-grams
- Ex. for trigram probability P_{GT} (three || spent), then n is count of I spent and c is count of I spent three.

Problems with Good-Turing

- Assumes we know the vocabulary size (no unseen words) [but again, use UNK: see J&M 4.3.2]
- Doesn't allow "holes" in the counts (if $N_i > 0$, $N_{i-1} > 0$) [can estimate using linear regression: see J&M 4.5.3]
- Applies discounts even to high-frequency items [but see J&M 4.5.3]
- But there's a more fundamental problem...

Remaining problem

- In training corpus, suppose we see Scottish beer but neither of
 - Scottish beer drinkers
 - Scottish beer eaters
- If we build a trigram model smoothed with Add- α or G-T, which example has higher probability?

Remaining problem

- Previous smoothing methods assign equal probability to all unseen events.
- Better: use information from lower order *N*-grams (shorter histories).
 - beer drinkers
 - beer eaters
- Two ways: interpolation and backoff.

Interpolation

- **Combine** higher and lower order N-gram models, since they have different strengths and weaknesses:
 - high-order N-grams are sensitive to more context, but have sparse counts
 - low-order N-grams have limited context, but robust counts
- If P_N is N-gram estimate (from MLE, GT, etc; N = 1 3), use:

 $P_{\text{INT}}(w_3|w_1, w_2) = \lambda_1 P_1(w_3) + \lambda_2 P_2(w_3|w_2) + \lambda_3 P_3(w_3|w_1, w_2)$

 $P_{\text{INT}}(\text{three}|\text{I, spent}) = \lambda_1 P_1(\text{three}) + \lambda_2 P_2(\text{three}|\text{spent}) + \lambda_3 P_3(\text{three}|\text{I, spent})$

Interpolation

• Note that λ_i s must sum to 1:

$$1 = \sum_{w_3} P_{\text{INT}}(w_3|w_1, w_2)$$

= $\sum_{w_3} [\lambda_1 P_1(w_3) + \lambda_2 P_2(w_3|w_2) + \lambda_3 P_3(w_3|w_1, w_2)]$
= $\lambda_1 \sum_{w_3} P_1(w_3) + \lambda_2 \sum_{w_3} P_2(w_3|w_2) + \lambda_3 \sum_{w_3} P_3(w_3|w_1, w_2)$
= $\lambda_1 + \lambda_2 + \lambda_3$

Fitting the interpolation parameters

- In general, any weighted combination of distributions is called a mixture model.
- So λ_i s are interpolation parameters or mixture weights.
- The values of the λ_i s are chosen to optimize perplexity on a held-out data set.

Katz Back-Off

- Solve the problem in a similar way to Good-Turing smoothing.
- Discount the trigram-based probability estimates.
- This leaves some probability mass to share among the estimates from the lower-order model(s).
- Katz backoff: Good-Turing discount the observed counts, but
- instead of distributing that mass uniformly over unseen items, use it for backoff estimates.

Back-Off Formulae

• Trust the highest order language model that contains $N\mbox{-}{\rm gram}$

$$P_{BO}(w_i|w_{i-N+1},...,w_{i-1}) = \begin{cases} P^*(w_i|w_{i-N+1},...,w_{i-1}) \\ \text{if count}(w_{i-N+1},...,w_i) > 0 \\ \alpha(w_{i-N+1},...,w_{i-1}) P_{BO}(w_i|w_{i-N+2},...,w_{i-1}) \\ \text{else} \end{cases}$$

Back-Off

- Requires
 - adjusted prediction model $P^*(w_i|w_{i-N+1},...,w_{i-1})$
 - backoff weights $\alpha(w_1,...,w_{N-1})$
- Exact equations get complicated to make probabilities sum to 1.
- See textbook for details if interested.

Summary

- Laplace and Good Turing recognise that a non-zero prob. mass is requires on unseen ngrams.
- \bullet Interpolation/backoff: leverage advantages of both higher and lower order $N\mbox{-}grams.$