# Foundations of Natural Language Processing <br> Lecture 7a: More smoothing 

Alex Lascarides
informatics

## Recap: Smoothing for language models

- $N$-gram LMs reduce sparsity by assuming each word only depends on a fixed-length history.
- But even this assumption isn't enough: we still encounter lots of unseen N -grams in a test set or new corpus.
- If we use MLE, we'll assign 0 probability to unseen items: useless as an LM.
- Smoothing solves this problem: move probability mass from seen items to unseen items.


## Smoothing methods so far

- Add- $\alpha$ smoothing: $(\alpha=1$ or $<1)$ very simple, but no good when vocabulary size is large.
- Good-Turing smoothing:
- estimate the probability of seeing (any) item with $N_{c}$ counts (e.g., 0 count) as the proportion of items already seen with $N_{c+1}$ counts (e.g., 1 count).
- Divide that probability evenly between all possible items with $N_{c}$ counts.


## Good-Turing smoothing

- If $n$ is count of history, then $P_{G T}=\frac{c^{*}}{n}$ where

$$
c^{*}=(c+1) \frac{N_{c+1}}{N_{c}}
$$

- $N_{c}$ number of $N$-grams that occur exactly $c$ times in corpus
- $N_{0}$ total number of unseen $N$-grams
- Ex. for trigram probability $P_{G T}$ (three $\mid$ spent), then $n$ is count of I spent and $c$ is count of I spent three.


## Problems with Good-Turing

- Assumes we know the vocabulary size (no unseen words) [but again, use UNK: see J\&M 4.3.2]
- Doesn't allow "holes" in the counts (if $N_{i}>0, N_{i-1}>0$ ) [can estimate using linear regression: see J\&M 4.5.3]
- Applies discounts even to high-frequency items [but see J\&M 4.5.3]
- But there's a more fundamental problem...


## Remaining problem

- In training corpus, suppose we see Scottish beer but neither of
- Scottish beer drinkers
- Scottish beer eaters
- If we build a trigram model smoothed with Add- $\alpha$ or G-T, which example has higher probability?


## Remaining problem

- Previous smoothing methods assign equal probability to all unseen events.
- Better: use information from lower order $N$-grams (shorter histories).
- beer drinkers
- beer eaters
- Two ways: interpolation and backoff.


## Interpolation

- Combine higher and lower order $N$-gram models, since they have different strengths and weaknesses:
- high-order $N$-grams are sensitive to more context, but have sparse counts
- low-order $N$-grams have limited context, but robust counts
- If $P_{N}$ is $N$-gram estimate (from MLE, GT, etc; $N=1-3$ ), use:

$$
\begin{array}{r}
P_{\text {INT }}\left(w_{3} \mid w_{1}, w_{2}\right)=\lambda_{1} P_{1}\left(w_{3}\right)+\lambda_{2} P_{2}\left(w_{3} \mid w_{2}\right)+\lambda_{3} P_{3}\left(w_{3} \mid w_{1}, w_{2}\right) \\
P_{\text {INT }}(\text { three } \mid \text { I, spent })=\lambda_{1} P_{1}(\text { three })+\lambda_{2} P_{2}(\text { three } \mid \text { spent }) \\
+
\end{array}
$$

## Interpolation

- Note that $\lambda_{i} \mathrm{~s}$ must sum to 1 :

$$
\begin{aligned}
1 & =\sum_{w_{3}} P_{\mathrm{INT}}\left(w_{3} \mid w_{1}, w_{2}\right) \\
& =\sum_{w_{3}}\left[\lambda_{1} P_{1}\left(w_{3}\right)+\lambda_{2} P_{2}\left(w_{3} \mid w_{2}\right)+\lambda_{3} P_{3}\left(w_{3} \mid w_{1}, w_{2}\right)\right] \\
& =\lambda_{1} \sum_{w_{3}} P_{1}\left(w_{3}\right)+\lambda_{2} \sum_{w_{3}} P_{2}\left(w_{3} \mid w_{2}\right)+\lambda_{3} \sum_{w_{3}} P_{3}\left(w_{3} \mid w_{1}, w_{2}\right) \\
& =\lambda_{1}+\lambda_{2}+\lambda_{3}
\end{aligned}
$$

## Fitting the interpolation parameters

- In general, any weighted combination of distributions is called a mixture model.
- So $\lambda_{i} \mathrm{~S}$ are interpolation parameters or mixture weights.
- The values of the $\lambda_{i} s$ are chosen to optimize perplexity on a held-out data set.


## Katz Back-Off

- Solve the problem in a similar way to GoodTuring smoothing.
- Discount the trigram-based probability estimates.
- This leaves some probability mass to share among the estimates from the lower-order model(s).
- Katz backoff: Good-Turing discount the observed counts, but

- instead of distributing that mass uniformly over unseen items, use it for backoff estimates.


## Back-Off Formulae

- Trust the highest order language model that contains $N$-gram

$$
\begin{aligned}
& P_{B O}\left(w_{i} \mid w_{i-N+1}, \ldots, w_{i-1}\right)= \\
& \quad=\left\{\begin{array}{c}
P^{*}\left(w_{i} \mid w_{i-N+1}, \ldots, w_{i-1}\right) \\
\text { if } \operatorname{count}\left(w_{i-N+1}, \ldots, w_{i}\right)>0 \\
\alpha\left(w_{i-N+1}, \ldots, w_{i-1}\right) P_{B O}\left(w_{i} \mid w_{i-N+2}, \ldots, w_{i-1}\right) \\
\text { else }
\end{array}\right.
\end{aligned}
$$

## Back-Off

- Requires
- adjusted prediction model $P^{*}\left(w_{i} \mid w_{i-N+1}, \ldots, w_{i-1}\right)$
- backoff weights $\alpha\left(w_{1}, \ldots, w_{N-1}\right)$
- Exact equations get complicated to make probabilities sum to 1 .
- See textbook for details if interested.


## Summary

- Laplace and Good Turing recognise that a non-zero prob. mass is requires on unseen ngrams.
- Interpolation/backoff: leverage advantages of both higher and lower order N -grams.

