Foundations of Natural Language Processing Lecture 8a Spelling correction

Alex Lascarides

Overview

- We've suggested many ways in which LMs, as a component in a noisy channel model can be used for NLP tasks
 - Spelling correction, machine translation, speech recognition . . .
- We now need algorithms for acquiring noisy channel models from data, and in particular the noise model.
- Now: A very simple algorithm, applied to spelling correction.
- **Subsequently:** More sophisticated algorithms for learning noisy channel models.

Recap: a noisy channel model approach

A general probabilistic framework, which helps us estimate something hidden (e.g., for spelling correction, the intended word) via two distributions:

- P(Y): Language model. The distribution over the words the user intended to type.
- P(X|Y): Noise model. The distribution describing what user is **likely** to type, given what they **meant** to type.

Given some particular word(s) x (say, no much effert), we want to recover the most probable y that was intended.

Recap: noisy channel model

• Mathematically, what we want is

```
\operatorname{argmax}_{y} P(y|x) = \operatorname{argmax}_{y} P(x|y)P(y)
```

- Assume we have a way to compute P(x|y) and P(y). Can we do the following?
 - Consider all possible intended words y.
 - For each y, compute P(x|y)P(y).
 - Return the y with highest P(x|y)P(y) value.

Recap: noisy channel model

• Mathematically, what we want is

$$\operatorname{argmax}_{\vec{y}} P(\vec{y}|\vec{x}) = \operatorname{argmax}_{\vec{y}} P(\vec{x}|\vec{y}) P(\vec{y})$$

- Assume we have a way to compute P(x|y) and P(y). Can we do the following?
 - Consider all possible intended words \vec{y} .
 - For each \vec{y} , compute $P(\vec{x}|\vec{y})P(\vec{y})$.
 - Return the \vec{y} with highest $P(\vec{x}|\vec{y})P(\vec{y})$ value.
- No! Without constraints, there are an infinite # of possible ys.

Algorithm sketch

- A very basic spelling correction system. Assume:
 - we have a large dictionary of real words;
 - we don't split or merge 'words' in the input string; and
 - we only consider corrections that differ by a single character (insertion, deletion, or substitution) from the non-word.
- Then we can do the following to correct each non-word x_i :
 - Generate a list of all words y_i that differ by 1 character from x_i .
 - Compute $P(\vec{x}|\vec{y})P(\vec{y})$ for each \vec{y} and return the \vec{y} with highest value.

A simple noise model

• Suppose we have a corpus of **alignments** between actual and corrected spellings.

- This example has
 - one substitution (o \rightarrow e)
 - one deletion (t \rightarrow -, where is used to show the alignment, but nothing appears in the text)
 - one insertion (- \rightarrow u)

A simple noise model

- Assume that the typed character x_i depends only on intended character y_i (ignoring context).
- So, substitution $o \rightarrow e$ is equally probable regardless of whether the word is effort, spoon, or whatever.
- Then for each observed sequence \vec{x} , made up of a sequence of characters (including spaces) $x_1, \ldots x_n$, we have

$$P(\vec{x}|\vec{y}) = \prod_{i=1}^{n} P(x_i|y_i)$$

For example, P(no|not) = P(n|n)P(o|o)P(-|t)

See Brill and Moore (2000) on course page for an example of a better model.

Estimating the probabilities

- Using our corpus of alignments, we can easily estimate $P(x_i|y_i)$ for each character pair.
- Simply count how many times each character (including empty character for del/ins) was used in place of each other character.
- The table of these counts is called a **confusion matrix**.
- Then use MLE or smoothing to estimate probabilities.

Example confusion matrix

$y \setminus x$	А	В	С	D	Е	F	G	Н	
А	168	1	0	2	5	5	1	3	
В	0	136	1	0	3	2	0	4	
C	1	6	111	5	11	6	36	5	
D	1	17	4	157	6	11	0	5	
E	2	10	0	1	98	27	1	5	
F	1	0	0	1	9	73	0	6	
G	1	3	32	1	5	3	127	3	
н	2	0	0	0	3	3	0	4	

• We saw G when the intended character was C 36 times.

Big picture again

- We now have a very simple spelling correction system, provided
 - we have a corpus of aligned examples, and
 - we can easily determine which real words are only one edit away from non-words.
- There are easy, fairly efficient, ways to do the latter (see http://norvig.com/spell-correct.html).
- But where do the alignments come from, and what if we want a more general algorithm that can compute edit distances between any two arbitrary words?

Summary

- Noisy Channel Models are a useful way of modelling many NLP tasks.
- It consists of two components, a language model $P(\boldsymbol{y})$ and a noise model $P(\boldsymbol{x}|\boldsymbol{y})$
- For spelling correction, P(x|y) can be estimated via a corpus of character aligned unedited vs. edited versions of a text, plus quite stringent assumptions.
 - Confusion matrix, MLE + smoothing
- Next Time: What if you don't have a corpus of character alignments? How do we relax those stringent assumptions?