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Last Time: Deriving FoL LFs via Linguistic Syntax

S
∃e(eat(e, fred , rice) ∧ e ≺ n)

NP

PropN

Fred
fred

VP

Vt

ate
∃e(eat(e, ?1, ?2) ∧ e ≺ n)

NP

MassN

rice
rice

• How do we get the bits to combine?
What are the LFs of the intermediate nodes?

Today: How it’s done: Lambda Calculus.
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Lambda Calculus and Beta Reduction

Allows us to work with ‘partially constructed’ formulae!

• If ϕ is a well-formed FoL expression and x is a variable, then
λxϕ is a well-formed FoL expression. It’s a function, known as a λ-term.

• λ-terms have interesting semantics, but they also offer a way of substituting
(free) variables in an FoL expression with values.

λxϕ(a) = ϕ[x/a]

• Creating a function λxϕ from an expresion ϕ is called Lambda (λ) abstraction
Function application is called Beta (β) reduction.

Example:

• λyλx(∃e(eat(e, x, y) ∧ e ≺ n))(rice) becomes
λx(∃e(eat(e, x, rice) ∧ e ≺ n))
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Introducing variables corresponding to properties,
relations. . .

• If we introduces variables of ‘higher type’ then we can substitute variables
corresponding to properties, relations etc with values that can be λ-terms!!

• λP.P (fred):
the properties of Fred (man, tall,. . . )
λP .P (fred)(man) becomes man(fred)

An example where the argument is a λ-term:

• λP (P (fred))(λx(∃e(eat(e, x, rice) ∧ e ≺ n))) becomes
λx(∃e(eat(e, x, rice) ∧ e ≺ n))(fred) becomes
∃e(eat(e, fred , rice) ∧ e ≺ n)
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Example Composition for Fred ate rice

But we’ll see in a minute why it’s problematic. . .
. . . and why λ-abstraction on higher types provides a solution!

S
λx∃e(eat(e, x, rice) ∧ e ≺ n)(fred)
∃e(eat(e, fred , rice) ∧ e ≺ n)

NP
fred

PropN
fred

Fred
fred

VP
λyλx∃e(eat(e, x, y) ∧ e ≺ n)(rice)
λx∃e(eat(e, x, rice) ∧ e ≺ n)

Vt
λyλx∃e(eat(e, x, y) ∧ e ≺ n)

ate
λyλx∃e(eat(e, x, y) ∧ e ≺ n)

NP
rice

MassN
rice

rice
rice
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The Grammar that generates that tree

S → NP VP VP.Sem(NP.Sem) (Sentences)
NP → MassN MassN.Sem | PropN PropN.Sem (Noun phrases)
VP → Vi Vi.Sem | Vt NP Vt.Sem(NP.Sem) (Verb phrases)
PropN → Fred fred | Jo jo. . . (Proper nouns)
MassN → rice rice | wood wood . . . (Mass nouns)
Vi → talked λx∃e(talk(e, x) ∧ e ≺ n) | . . . (Intransitive verbs)
Vt → ate λyλx.∃e(eat(e, x, y) ∧ e ≺ n) | . . . (Transitive verbs)

Observations:

• λ-term for Vt ensures NP values are in right positions to predicate eat

• Rules with two daughters specify in semantics which daughter is the functor
and which the argument

– S rule: VP is the functor.
– Transitive VP rule: Vt is the functor.

• Unary rules ‘pass up’ the semantics from the daughter.
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Problematic!

Every man ate rice: ∀x(man(x)→ ∃e(eat(e, x, rice) ∧ e ≺ n))
Breaking it down:

• What is the meaning of Every man anyway?
∀x(man(x)→ Q(x))

• If so, the subject NP needs to be:
λQ∀x(man(x)→ Q(x))

• But in our grammar we had the VP as the functor:
S → NP VP VP.Sem(NP.Sem)

• λz∃e(eat(e, z, rice) ∧ e ≺ n)(λQ∀x(man(x)→ Q(x))) becomes
λz∃e(eat(e, λQ∀x(man(x)→ Q(x)), rice) ∧ e ≺ n)

• That’s not even syntactically well-formed!!
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Solution

Make NP the functor and VP the argument.

S → NP VP NP.Sem(VP.Sem)

λQ∀x(man(x)→ Q(x))(λz∃e(eat(e, z, rice) ∧ e ≺ n))
∀x(man(x)→ λz∃e(eat(e, z, rice) ∧ e ≺ n))(x))
∀x(man(x)→ ∃e(eat(e, x, rice) ∧ e ≺ n))

But this means NPs must all look like this: λP.P (x).
Fred 7→ λP.P (fred) etc.
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Now a problem with transitive verbs!!

ate every grape:
λyλz∃e(eat(e, z, y) ∧ e ≺ n) λQ∀x(grape(x)→ Q(x))

NP.Sem(Vt.Sem) is ill formed!

λQ∀x(grape(x)→ Q(x))(λyλz∃e(eat(e, z, y)∧ ≺ n)) becomes
∀x(grape(x)→ λyλz∃e(eat(e, z, y) ∧ e ≺ n)(x) becomes
∀x(grape(x)→ λz∃e(eat(e, z, x) ∧ e ≺ n)) ill-formed!

It should be: λz∀x(grape(x)→ ∃e(eat(e, z, x) ∧ e ≺ n))
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Type Raising to the rescue again

VP → Vt NP Vt.Sem(NP.Sem)
Vt → ate λR.λz.R(λy.∃e(eat(e, z, y) ∧ e ≺ n))

ate every grape:

λR.λz.R(λy.∃e(eat(e, z, y) ∧ e ≺ n))(λQ∀x(grape(x)→ Q(x))) becomes
λzλQ∀x(grape(x)→ Q(x))(λy.∃e(eat(e, z, y) ∧ e ≺ n)) becomes
λz∀x(grape(x)→ λy.∃e(eat(e, z, y) ∧ e ≺ n)(x)) becomes
λz∀x(grape(x)→ ∃e(eat(e, z, x)))
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Grammar Refined! (Changes in purple)

S → NP VP NP.Sem(VP.Sem) (Sentences)
NP → MassN MassN.Sem | PropN PropN.Sem | (Noun phrases)

Det N Det.Sem(N.Sem)
VP → Vi Vi.Sem | Vt NP Vt.Sem(NP.Sem) (Verb phrases)
PropN → Fred λP.P (fred) | . . . (Proper nouns)
MassN → rice λP.P (rice) | . . . (Mass nouns)
Vi → talked λx∃e(talk(e, x) ∧ e ≺ n) | . . . (Intransitive verbs)
Vt → ate λR.λz.R(λy.∃e(eat(e, z, y) ∧ e ≺ n)) (Transitive verbs)
N → man λx.man(x) (Count Nouns)
Det → a λPλQ∃x(P (x) ∧Q(x)) | (Determiners)

every λQλQ∃x(P (x)→ Q(x))
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Example Derivation: Every man ate rice

S
λQ.∀x(man(x)→ Q(x))(λz.∃e(eat(e, z, rice) ∧ e ≺ n))
∀x(man(x)→ λz.∃e(eat(e, z, rice) ∧ e ≺ n)(x))
∀x(man(x)→ ∃e(eat(e, x, rice) ∧ e ≺ n))

NP
λPλQ∀x(P (x)→ Q(x))(λz.man(z))

λQ∀x(λz.man(z)(x)→ Q(x))
λQ∀x(man(x)→ Q(x))

Det

every
λPλQ∀x(P (x)→ Q(x))

N

man
λz.man(z)

VP
λR.λz.R(λy∃e(eat(e, z, y) ∧ e ≺ n))(λP.P (rice))

λz.λP.P (rice)(λy∃e(eat(e, z, y) ∧ e ≺ n))
λz.(λy.∃e(eat(e, z, y) ∧ e ≺ n)(rice))

λz.∃e(eat(e, z, rice) ∧ e ≺ n)

Vt

ate
λR.λz.R(λy∃e(eat(e, z, y) ∧ e ≺ n))

NP

MassN

rice
λP.P (rice)
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Every man loves a woman Other reading??

S
λQ.∀x(man(x)→ Q(x))(λz.∃w(woman(w) ∧ ∃e(love(e, z, w) ∧ n ⊆ e)))

∀x(man(x)→ λz.∃w(woman(w) ∧ ∃e(love(e, z, w) ∧ n ⊆ e)))
∀x(man(x)→ ∃w(woman(w) ∧ ∃e(love(e, x, w) ∧ n ⊆ e)))

NP
λPλQ(P (x)→ Q(x))(λz.man(z))

λQ(λz.man(z)(x)→ Q(x))
λQ(man(x)→ Q(x))

Det

every
λPλQ∀x(P (x)→ Q(x))

N

man
λz.man(z)

VP
λR.λz.R(λy∃e(love(e, z, y) ∧ n ⊆ e))(λT∃w(woman(w) ∧ T (w))) 7→

λz.∃w(woman(w) ∧ ∃e(love(e, z, w) ∧ n ⊆ e))

Vt

loves
λR.λz.R(λy∃e(love(e, z, y) ∧ n ⊆ e))

NP
λSλT∃w(S(w) ∧ T (w))(λz.woman(z))

λT∃w(woman(w) ∧ T (w))

DET

a
λS.λT∃w(S(w) ∧ T (w))

N

woman
λz.woman(z)
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Semantic Ambiguity

• Every man loves a woman has two different interpretations because of its
determiners:

– Possibly a different woman per man
∀x(man(x)→ ∃y(woman(y) ∧ ∃e(love(e, x, y) ∧ n ⊆ e)))

– The same woman for all men
∃y(woman(y) ∧ ∀x(man(x)→ ∃e(love(e, x, y) ∧ n ⊆ e)))

• But the English sentence isn’t syntactically ambiguous!!
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Scope

• The ambiguity arises because every and a each has its own scope:

Interpretation 1: every has scope over a
Interpretation 2: a has scope over every

• Scope is not uniquely determined either by left-to-right order,
or by position in the parse tree.

• We therefore need other mechanisms to ensure that the ambiguity is reflected
in the LF assigned to S.
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Scope ambiguity, continued

The number of interpretations grows exponentially with the number of scope
operators:

Every student at some university has access to a laptop.

1. Not necessarily same laptop, not necessarily same university

∀x(stud(x) ∧ ∃y(univ(y) ∧ at(x, y))→ ∃z(laptop(z) ∧ have access(x, z)))

2. Same laptop, not necessarily same university

∃z(laptop(z) ∧ ∀x(stud(x) ∧ ∃y(univ(y) ∧ at(x, y))→ have access(x, z)))

3. Not necessarily same laptop, same university

∃y(univ(y) ∧ ∀x((stud(x) ∧ at(x, y))→ ∃z(laptop(z) ∧ have access(x, z))))

4. Same university, same laptop ∃y(univ(y) ∧ ∃z(laptop(z) ∧ ∀x((stud(x) ∧ at(x, y))→ have access(x, z))))

5. Same laptop, same university ∃z(laptop(z) ∧ ∃y(univ(y) ∧ ∀x((stud(x) ∧ at(x, y))→ have access(x, z))))

where 4 & 5 are equivalent

Every student at some university does not have access to a computer.
→ 18 interpretations
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Coping with Scope: options

Enumerate all interpretations: Computationally unattractive!

Semantic Underspecification: Build LFs via syntax that underspecify the
relative semantic scopes of the quantifiers

• Partial description of a FoL formula
• So Syntax-Tree:LF is 1:1, but the LF describes several FoL formulae

and hence several interpretations

Sometimes the surrounding context will help us choose between interpretations:

Every student has access to a computer. It can be borrowed from the ITO.
(⇒ a outscopes every)
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Semantic Underspecification

• The LF constructed in the grammar features:

1. FoL bits
2. constraints on how they can combine into an FoL formula

• The constraints are satisfied by more than one FoL formula.
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A Picture showing common bits and different bits

∀x

man(x) → ∃y

woman(y) ∧ ∃e(love(e, x, y) ∧ n ⊆ e)

∃y

woman(y) ∧ ∀x

man(x) → ∃e(love(e, x, y) ∧ n ⊆ e)
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Technique

• Label nodes of the tree: l1, l2 . . .

• Supply constraints on what FoL expressions appear at those labels

Every man loves a woman.

Ignoring ∃e and n ⊆ e. . .

l1 : ∀x(h2 → h3)
l2 : man(x)
l3 : love(e, x, y)
l4 : ∃y(h4 ∧ h5)
l5 : woman(y)
h2 =q l2, h4 =q l5
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Resolving Scope

l1 : ∀x(h2 → h3)

l2 : man(x)

l3 : love(e, x, y)

l4 : ∃y(h4 ∧ h5)

l5 : woman(y)

h2 =q l2, h4 =q l5

• All hs must equal a (unique) l; no free variables

• So there are two solutions:

∃ outscopes ∀: h2 = l2, h4 = l5, h3 = l3h5 = l1
∀ outscopes ∃: h2 = l2, h4 = l5, h3 = l1, h5 = l3

• LF construction via the grammar must now λ-abstract labels, as well as
predicates, arguments to predicates etc.
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Summary

• Syntax guides semantic composition in a systematic way.

• Lambda expressions facilitate the construction of compositional semantic
interpretations off the syntax tree.

– Associate each word with a λ-term
– Within the grammar, say which daughter is the functor.

• However, semantic scope ambiguities suggest that not all semantic ambiguities
should surface as syntactic ambiguities within the grammar.

• There are solutions to this that exploit semantic underspecification.

Next Lecture: Semantic Role Labelling
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