Foundations of Natural Language Processing Lecture 18c Compositional Semantics: Technical Details

Alex Lascarides

Last Time: Deriving FoL LFs via Linguistic Syntax

How do we get the bits to combine?
 What are the LFs of the intermediate nodes?

Today: How it's done: Lambda Calculus.

Lambda Calculus and Beta Reduction

Allows us to work with 'partially constructed' formulae!

- If φ is a well-formed FoL expression and x is a variable, then $\lambda x \varphi$ is a well-formed FoL expression. It's a function, known as a λ -term.
- λ -terms have interesting semantics, but they also offer a way of substituting (free) variables in an FoL expression with values.

 $\lambda x \varphi(a) = \varphi[x/a]$

• Creating a function $\lambda x \varphi$ from an expression φ is called Lambda (λ) abstraction Function application is called Beta (β) reduction.

Example:

• $\lambda y \lambda x (\exists e(eat(e, x, y) \land e \prec n))(rice)$ becomes $\lambda x (\exists e(eat(e, x, rice) \land e \prec n))$

Introducing variables corresponding to properties, relations. . .

- If we introduces variables of 'higher type' then we can substitute variables corresponding to properties, relations etc with values that can be λ -terms!!
- λP.P(fred): the properties of Fred (man, tall,...) λP.P(fred)(man) becomes man(fred)

An example where the argument is a λ -term:

• $\lambda P(P(fred))(\lambda x(\exists e(eat(e, x, rice) \land e \prec n)))$ becomes $\lambda x(\exists e(eat(e, x, rice) \land e \prec n))(fred)$ becomes $\exists e(eat(e, fred, rice) \land e \prec n)$

Example Composition for Fred ate rice

But we'll see in a minute why it's problematic. . . and why λ -abstraction on higher types provides a solution!

The Grammar that generates that tree

 $S \rightarrow NP \ VP \ VP.Sem(NP.Sem)$ $NP \rightarrow MassN \ MassN.Sem \mid PropN \ PropN.Sem$ $VP \rightarrow Vi \ Vi.Sem \mid Vt \ NP \ Vt.Sem(NP.Sem)$ $PropN \rightarrow Fred \ fred \mid Jo \ jo.$ $MassN \rightarrow rice \ rice \ \mid wood \ wood$ $Vi \rightarrow talked \ \lambda x \exists e(talk(e, x) \land e \prec n) \mid$ $Vt \rightarrow ate \ \lambda y \lambda x. \exists e(eat(e, x, y) \land e \prec n) \mid$

(Sentences)
(Noun phrases)
(Verb phrases)
(Proper nouns)
(Mass nouns)
(Intransitive verbs)
(Transitive verbs)

Observations:

- λ -term for Vt ensures NP values are in right positions to predicate *eat*
- Rules with two daughters specify in semantics which daughter is the functor and which the argument
 - S rule: VP is the functor.
 - Transitive VP rule: Vt is the functor.
- Unary rules 'pass up' the semantics from the daughter.

Problematic!

Every man ate rice: $\forall x(man(x) \rightarrow \exists e(eat(e, x, rice) \land e \prec n))$ Breaking it down:

- What is the meaning of *Every man* anyway? $\forall x(man(x) \rightarrow Q(x))$
- If so, the subject NP needs to be: $\lambda Q \forall x (man(x) \rightarrow Q(x))$
- But in our grammar we had the VP as the functor:
 S → NP VP VP.Sem(NP.Sem)
- $\lambda z \exists e(eat(e, z, rice) \land e \prec n)(\lambda Q \forall x(man(x) \rightarrow Q(x)))$ becomes $\lambda z \exists e(eat(e, \lambda Q \forall x(man(x) \rightarrow Q(x)), rice) \land e \prec n)$
- That's not even syntactically well-formed!!

Solution

Make NP the functor and VP the argument.

 $S \rightarrow NP VP NP.Sem(VP.Sem)$

$$\begin{split} &\lambda Q \forall x (man(x) \to Q(x)) (\lambda z \exists e (eat(e, z, rice) \land e \prec n)) \\ &\forall x (man(x) \to \lambda z \exists e (eat(e, z, rice) \land e \prec n))(x)) \\ &\forall x (man(x) \to \exists e (eat(e, x, rice) \land e \prec n)) \end{split}$$

But this means NPs must all look like this: $\lambda P.P(x)$. Fred $\mapsto \lambda P.P(fred)$ etc.

Now a problem with transitive verbs!!

 $\begin{array}{ll} \text{ate} & \text{every grape:} \\ \lambda y \lambda z \exists e(eat(e,z,y) \land e \prec n) & \lambda Q \forall x(grape(x) \rightarrow Q(x)) \end{array}$

NP.Sem(Vt.Sem) is ill formed!

$$\begin{split} &\lambda Q \forall x (grape(x) \to Q(x)) (\lambda y \lambda z \exists e(eat(e, z, y) \land \prec n)) \text{ becomes} \\ &\forall x (grape(x) \to \lambda y \lambda z \exists e(eat(e, z, y) \land e \prec n)(x) \text{ becomes} \\ &\forall x (grape(x) \to \lambda z \exists e(eat(e, z, x) \land e \prec n)) \end{split}$$

ill-formed!

It should be: $\lambda z \forall x (grape(x) \rightarrow \exists e(eat(e, z, x) \land e \prec n))$

Type Raising to the rescue again

 $\begin{array}{lll} \mathsf{VP} \to \mathsf{Vt} \; \mathsf{NP} & \textit{Vt.Sem}(\textit{NP.Sem}) \\ \mathsf{Vt} \to \mathsf{ate} & \lambda R.\lambda z.R(\lambda y.\exists e(eat(e,z,y) \land e \prec n)) \end{array}$

ate every grape:

$$\begin{split} &\lambda R.\lambda z.R(\lambda y.\exists e(eat(e,z,y) \land e \prec n))(\lambda Q \forall x(grape(x) \rightarrow Q(x))) \text{ becomes} \\ &\lambda z\lambda Q \forall x(grape(x) \rightarrow Q(x))(\lambda y.\exists e(eat(e,z,y) \land e \prec n)) \text{ becomes} \\ &\lambda z\forall x(grape(x) \rightarrow \lambda y.\exists e(eat(e,z,y) \land e \prec n)(x)) \text{ becomes} \\ &\lambda z\forall x(grape(x) \rightarrow \exists e(eat(e,z,x))) \end{split}$$

Grammar Refined!

(Changes in purple)

$S \to$	NP VP <i>NP.Sem(VP.Sem)</i>	(Sentences)
$NP \to$	MassN MassN.Sem PropN PropN.Sem	(Noun phrases)
	Det N Det.Sem(N.Sem)	
$VP \to$	Vi Vi.Sem Vt NP Vt.Sem(NP.Sem)	(Verb phrases)
$PropN \to$	Fred $\lambda P.P(fred)$	(Proper nouns)
$MassN \to$	rice $\lambda P.P(rice)$	(Mass nouns)
$Vi \rightarrow$	talked $\lambda x \exists e(talk(e, x) \land e \prec n) \mid \dots$	(Intransitive verbs)
$Vt \to$	ate $\lambda R.\lambda z.R(\lambda y.\exists e(eat(e, z, y) \land e \prec n))$	(Transitive verbs)
$N \rightarrow$	man $\lambda x.man(x)$	(Count Nouns)
$Det \to$	a $\lambda P \lambda Q \exists x (P(x) \land Q(x))$	(Determiners)
	every $\lambda Q \lambda Q \exists x (P(x) \rightarrow Q(x))$	-

Example Derivation: Every man ate rice

Every man loves a woman

Other reading??

Semantic Ambiguity

- Every man loves a woman has two different interpretations because of its determiners:
 - Possibly a different woman per man $\forall x(man(x) \rightarrow \exists y(woman(y) \land \exists e(love(e, x, y) \land n \subseteq e)))$
 - The same woman for all men $\exists y(woman(y) \land \forall x(man(x) \rightarrow \exists e(love(e, x, y) \land n \subseteq e)))$
- But the English sentence isn't syntactically ambiguous!!

Scope

• The ambiguity arises because every and a each has its own scope:

```
Interpretation 1:every has scope over aInterpretation 2:a has scope over every
```

- Scope is not uniquely determined either by left-to-right order, or by position in the parse tree.
- We therefore need other mechanisms to ensure that the ambiguity is reflected in the LF assigned to S.

Scope ambiguity, continued

The number of interpretations grows exponentially with the number of scope operators:

Every student at **some** university has access to **a** laptop.

- 1. Not necessarily same laptop, not necessarily same university
- $\forall x(stud(x) \land \exists y(univ(y) \land at(x,y)) \rightarrow \exists z(laptop(z) \land have_access(x,z))) \\$
- 2. Same laptop, not necessarily same university
- $\exists z(laptop(z) \land \forall x(stud(x) \land \exists y(univ(y) \land at(x,y)) \rightarrow have_access(x,z))) \\$
- 3. Not necessarily same laptop, same university
- $\exists y(univ(y) \land \forall x((stud(x) \land at(x, y)) \rightarrow \exists z(laptop(z) \land have_access(x, z))))$
- 4. Same university, same laptop $\exists y(univ(y) \land \exists z(laptop(z) \land \forall x((stud(x) \land at(x, y)) \rightarrow have_access(x, z))))$
- 5. Same laptop, same university $\exists z(laptop(z) \land \exists y(univ(y) \land \forall x((stud(x) \land at(x, y)) \rightarrow have_access(x, z))))$

where 4 & 5 are equivalent

Every student at **some** university does **not** have access to **a** computer. \rightarrow 18 interpretations

Coping with Scope: options

Enumerate all interpretations: Computationally unattractive!

Semantic Underspecification: Build LFs via syntax that **underspecify** the relative semantic scopes of the quantifiers

- Partial description of a FoL formula
- So Syntax-Tree:LF is 1:1, but the LF describes several FoL formulae and hence several interpretations

Sometimes the surrounding context will help us choose between interpretations:

Every student has access to a computer. It can be borrowed from the ITO. $(\Rightarrow a \text{ outscopes every})$

Semantic Underspecification

- The LF constructed in the grammar features:
 - 1. FoL bits
 - 2. constraints on how they can combine into an FoL formula
- The constraints are satisfied by more than one FoL formula.

A Picture showing common bits and different bits

Technique

- Label nodes of the tree: $l_1, l_2 \dots$
- Supply constraints on what FoL expressions appear at those labels

Every man loves a woman.

Ignoring $\exists e \text{ and } n \subseteq e...$

 $l_1: \quad \forall x(h_2 \to h_3)$ $l_2: \quad man(x)$ $l_3: \quad love(e, x, y)$ $l_4: \quad \exists y(h_4 \land h_5)$ $l_5: \quad woman(y)$ $h_2 =_q l_2, h_4 =_q l_5$

Resolving Scope

$$egin{aligned} l_1: & orall x(h_2 o h_3) \ l_2: & man(x) \ l_3: & love(e,x,y) \ l_4: & \exists y(h_4 \wedge h_5) \ l_5: & woman(y) \ h_2 =_q l_2, h_4 =_q l_5 \end{aligned}$$

- All *h*s must equal a (unique) *l*; no free variables
- So there are two solutions:

∃ outscopes ∀: $h_2 = l_2, h_4 = l_5, h_3 = l_3h_5 = l_1$ ∀ outscopes ∃: $h_2 = l_2, h_4 = l_5, h_3 = l_1, h_5 = l_3$

• LF construction via the grammar must now $\lambda\text{-abstract}$ labels, as well as predicates, arguments to predicates etc.

Summary

- Syntax guides semantic composition in a systematic way.
- Lambda expressions facilitate the construction of compositional semantic interpretations off the syntax tree.
 - Associate each word with a λ -term
 - Within the grammar, say which daughter is the functor.
- However, semantic scope ambiguities suggest that not all semantic ambiguities should surface as syntactic ambiguities within the grammar.
- There are solutions to this that exploit semantic underspecification.

Next Lecture: Semantic Role Labelling