
Foundations of Natural Language Processing
Lecture 18c

Compositional Semantics: Technical Details

Alex Lascarides

Alex Lascarides FNLP Lecture 18c

Last Time: Deriving FoL LFs via Linguistic Syntax

S
∃e(eat(e, fred , rice) ∧ e ≺ n)

NP

PropN

Fred
fred

VP

Vt

ate
∃e(eat(e, ?1, ?2) ∧ e ≺ n)

NP

MassN

rice
rice

• How do we get the bits to combine?
What are the LFs of the intermediate nodes?

Today: How it’s done: Lambda Calculus.

Alex Lascarides FNLP Lecture 18c 1

Lambda Calculus and Beta Reduction

Allows us to work with ‘partially constructed’ formulae!

• If ϕ is a well-formed FoL expression and x is a variable, then
λxϕ is a well-formed FoL expression. It’s a function, known as a λ-term.

• λ-terms have interesting semantics, but they also offer a way of substituting
(free) variables in an FoL expression with values.

λxϕ(a) = ϕ[x/a]

• Creating a function λxϕ from an expresion ϕ is called Lambda (λ) abstraction
Function application is called Beta (β) reduction.

Example:

• λyλx(∃e(eat(e, x, y) ∧ e ≺ n))(rice) becomes
λx(∃e(eat(e, x, rice) ∧ e ≺ n))

Alex Lascarides FNLP Lecture 18c 2

Introducing variables corresponding to properties,
relations. . .

• If we introduces variables of ‘higher type’ then we can substitute variables
corresponding to properties, relations etc with values that can be λ-terms!!

• λP.P (fred):
the properties of Fred (man, tall,. . .)
λP .P (fred)(man) becomes man(fred)

An example where the argument is a λ-term:

• λP (P (fred))(λx(∃e(eat(e, x, rice) ∧ e ≺ n))) becomes
λx(∃e(eat(e, x, rice) ∧ e ≺ n))(fred) becomes
∃e(eat(e, fred , rice) ∧ e ≺ n)

Alex Lascarides FNLP Lecture 18c 3

Example Composition for Fred ate rice

But we’ll see in a minute why it’s problematic. . .
. . . and why λ-abstraction on higher types provides a solution!

S
λx∃e(eat(e, x, rice) ∧ e ≺ n)(fred)
∃e(eat(e, fred , rice) ∧ e ≺ n)

NP
fred

PropN
fred

Fred
fred

VP
λyλx∃e(eat(e, x, y) ∧ e ≺ n)(rice)
λx∃e(eat(e, x, rice) ∧ e ≺ n)

Vt
λyλx∃e(eat(e, x, y) ∧ e ≺ n)

ate
λyλx∃e(eat(e, x, y) ∧ e ≺ n)

NP
rice

MassN
rice

rice
rice

Alex Lascarides FNLP Lecture 18c 4

The Grammar that generates that tree

S → NP VP VP.Sem(NP.Sem) (Sentences)
NP → MassN MassN.Sem | PropN PropN.Sem (Noun phrases)
VP → Vi Vi.Sem | Vt NP Vt.Sem(NP.Sem) (Verb phrases)
PropN → Fred fred | Jo jo. . . (Proper nouns)
MassN → rice rice | wood wood . . . (Mass nouns)
Vi → talked λx∃e(talk(e, x) ∧ e ≺ n) | . . . (Intransitive verbs)
Vt → ate λyλx.∃e(eat(e, x, y) ∧ e ≺ n) | . . . (Transitive verbs)

Observations:

• λ-term for Vt ensures NP values are in right positions to predicate eat

• Rules with two daughters specify in semantics which daughter is the functor
and which the argument

– S rule: VP is the functor.
– Transitive VP rule: Vt is the functor.

• Unary rules ‘pass up’ the semantics from the daughter.

Alex Lascarides FNLP Lecture 18c 5

Problematic!

Every man ate rice: ∀x(man(x)→ ∃e(eat(e, x, rice) ∧ e ≺ n))
Breaking it down:

• What is the meaning of Every man anyway?
∀x(man(x)→ Q(x))

• If so, the subject NP needs to be:
λQ∀x(man(x)→ Q(x))

• But in our grammar we had the VP as the functor:
S → NP VP VP.Sem(NP.Sem)

• λz∃e(eat(e, z, rice) ∧ e ≺ n)(λQ∀x(man(x)→ Q(x))) becomes
λz∃e(eat(e, λQ∀x(man(x)→ Q(x)), rice) ∧ e ≺ n)

• That’s not even syntactically well-formed!!

Alex Lascarides FNLP Lecture 18c 6

Solution

Make NP the functor and VP the argument.

S → NP VP NP.Sem(VP.Sem)

λQ∀x(man(x)→ Q(x))(λz∃e(eat(e, z, rice) ∧ e ≺ n))
∀x(man(x)→ λz∃e(eat(e, z, rice) ∧ e ≺ n))(x))
∀x(man(x)→ ∃e(eat(e, x, rice) ∧ e ≺ n))

But this means NPs must all look like this: λP.P (x).
Fred 7→ λP.P (fred) etc.

Alex Lascarides FNLP Lecture 18c 7

Now a problem with transitive verbs!!

ate every grape:
λyλz∃e(eat(e, z, y) ∧ e ≺ n) λQ∀x(grape(x)→ Q(x))

NP.Sem(Vt.Sem) is ill formed!

λQ∀x(grape(x)→ Q(x))(λyλz∃e(eat(e, z, y)∧ ≺ n)) becomes
∀x(grape(x)→ λyλz∃e(eat(e, z, y) ∧ e ≺ n)(x) becomes
∀x(grape(x)→ λz∃e(eat(e, z, x) ∧ e ≺ n)) ill-formed!

It should be: λz∀x(grape(x)→ ∃e(eat(e, z, x) ∧ e ≺ n))

Alex Lascarides FNLP Lecture 18c 8

Type Raising to the rescue again

VP → Vt NP Vt.Sem(NP.Sem)
Vt → ate λR.λz.R(λy.∃e(eat(e, z, y) ∧ e ≺ n))

ate every grape:

λR.λz.R(λy.∃e(eat(e, z, y) ∧ e ≺ n))(λQ∀x(grape(x)→ Q(x))) becomes
λzλQ∀x(grape(x)→ Q(x))(λy.∃e(eat(e, z, y) ∧ e ≺ n)) becomes
λz∀x(grape(x)→ λy.∃e(eat(e, z, y) ∧ e ≺ n)(x)) becomes
λz∀x(grape(x)→ ∃e(eat(e, z, x)))

Alex Lascarides FNLP Lecture 18c 9

Grammar Refined! (Changes in purple)

S → NP VP NP.Sem(VP.Sem) (Sentences)
NP → MassN MassN.Sem | PropN PropN.Sem | (Noun phrases)

Det N Det.Sem(N.Sem)
VP → Vi Vi.Sem | Vt NP Vt.Sem(NP.Sem) (Verb phrases)
PropN → Fred λP.P (fred) | . . . (Proper nouns)
MassN → rice λP.P (rice) | . . . (Mass nouns)
Vi → talked λx∃e(talk(e, x) ∧ e ≺ n) | . . . (Intransitive verbs)
Vt → ate λR.λz.R(λy.∃e(eat(e, z, y) ∧ e ≺ n)) (Transitive verbs)
N → man λx.man(x) (Count Nouns)
Det → a λPλQ∃x(P (x) ∧Q(x)) | (Determiners)

every λQλQ∃x(P (x)→ Q(x))

Alex Lascarides FNLP Lecture 18c 10

Example Derivation: Every man ate rice

S
λQ.∀x(man(x)→ Q(x))(λz.∃e(eat(e, z, rice) ∧ e ≺ n))
∀x(man(x)→ λz.∃e(eat(e, z, rice) ∧ e ≺ n)(x))
∀x(man(x)→ ∃e(eat(e, x, rice) ∧ e ≺ n))

NP
λPλQ∀x(P (x)→ Q(x))(λz.man(z))

λQ∀x(λz.man(z)(x)→ Q(x))
λQ∀x(man(x)→ Q(x))

Det

every
λPλQ∀x(P (x)→ Q(x))

N

man
λz.man(z)

VP
λR.λz.R(λy∃e(eat(e, z, y) ∧ e ≺ n))(λP.P (rice))

λz.λP.P (rice)(λy∃e(eat(e, z, y) ∧ e ≺ n))
λz.(λy.∃e(eat(e, z, y) ∧ e ≺ n)(rice))

λz.∃e(eat(e, z, rice) ∧ e ≺ n)

Vt

ate
λR.λz.R(λy∃e(eat(e, z, y) ∧ e ≺ n))

NP

MassN

rice
λP.P (rice)

Alex Lascarides FNLP Lecture 18c 11

Every man loves a woman Other reading??

S
λQ.∀x(man(x)→ Q(x))(λz.∃w(woman(w) ∧ ∃e(love(e, z, w) ∧ n ⊆ e)))

∀x(man(x)→ λz.∃w(woman(w) ∧ ∃e(love(e, z, w) ∧ n ⊆ e)))
∀x(man(x)→ ∃w(woman(w) ∧ ∃e(love(e, x, w) ∧ n ⊆ e)))

NP
λPλQ(P (x)→ Q(x))(λz.man(z))

λQ(λz.man(z)(x)→ Q(x))
λQ(man(x)→ Q(x))

Det

every
λPλQ∀x(P (x)→ Q(x))

N

man
λz.man(z)

VP
λR.λz.R(λy∃e(love(e, z, y) ∧ n ⊆ e))(λT∃w(woman(w) ∧ T (w))) 7→

λz.∃w(woman(w) ∧ ∃e(love(e, z, w) ∧ n ⊆ e))

Vt

loves
λR.λz.R(λy∃e(love(e, z, y) ∧ n ⊆ e))

NP
λSλT∃w(S(w) ∧ T (w))(λz.woman(z))

λT∃w(woman(w) ∧ T (w))

DET

a
λS.λT∃w(S(w) ∧ T (w))

N

woman
λz.woman(z)

Alex Lascarides FNLP Lecture 18c 12

Semantic Ambiguity

• Every man loves a woman has two different interpretations because of its
determiners:

– Possibly a different woman per man
∀x(man(x)→ ∃y(woman(y) ∧ ∃e(love(e, x, y) ∧ n ⊆ e)))

– The same woman for all men
∃y(woman(y) ∧ ∀x(man(x)→ ∃e(love(e, x, y) ∧ n ⊆ e)))

• But the English sentence isn’t syntactically ambiguous!!

Alex Lascarides FNLP Lecture 18c 13

Scope

• The ambiguity arises because every and a each has its own scope:

Interpretation 1: every has scope over a
Interpretation 2: a has scope over every

• Scope is not uniquely determined either by left-to-right order,
or by position in the parse tree.

• We therefore need other mechanisms to ensure that the ambiguity is reflected
in the LF assigned to S.

Alex Lascarides FNLP Lecture 18c 14

Scope ambiguity, continued

The number of interpretations grows exponentially with the number of scope
operators:

Every student at some university has access to a laptop.

1. Not necessarily same laptop, not necessarily same university

∀x(stud(x) ∧ ∃y(univ(y) ∧ at(x, y))→ ∃z(laptop(z) ∧ have access(x, z)))

2. Same laptop, not necessarily same university

∃z(laptop(z) ∧ ∀x(stud(x) ∧ ∃y(univ(y) ∧ at(x, y))→ have access(x, z)))

3. Not necessarily same laptop, same university

∃y(univ(y) ∧ ∀x((stud(x) ∧ at(x, y))→ ∃z(laptop(z) ∧ have access(x, z))))

4. Same university, same laptop ∃y(univ(y) ∧ ∃z(laptop(z) ∧ ∀x((stud(x) ∧ at(x, y))→ have access(x, z))))

5. Same laptop, same university ∃z(laptop(z) ∧ ∃y(univ(y) ∧ ∀x((stud(x) ∧ at(x, y))→ have access(x, z))))

where 4 & 5 are equivalent

Every student at some university does not have access to a computer.
→ 18 interpretations

Alex Lascarides FNLP Lecture 18c 15

Coping with Scope: options

Enumerate all interpretations: Computationally unattractive!

Semantic Underspecification: Build LFs via syntax that underspecify the
relative semantic scopes of the quantifiers

• Partial description of a FoL formula
• So Syntax-Tree:LF is 1:1, but the LF describes several FoL formulae

and hence several interpretations

Sometimes the surrounding context will help us choose between interpretations:

Every student has access to a computer. It can be borrowed from the ITO.
(⇒ a outscopes every)

Alex Lascarides FNLP Lecture 18c 16

Semantic Underspecification

• The LF constructed in the grammar features:

1. FoL bits
2. constraints on how they can combine into an FoL formula

• The constraints are satisfied by more than one FoL formula.

Alex Lascarides FNLP Lecture 18c 17

A Picture showing common bits and different bits

∀x

man(x) → ∃y

woman(y) ∧ ∃e(love(e, x, y) ∧ n ⊆ e)

∃y

woman(y) ∧ ∀x

man(x) → ∃e(love(e, x, y) ∧ n ⊆ e)

Alex Lascarides FNLP Lecture 18c 18

Technique

• Label nodes of the tree: l1, l2 . . .

• Supply constraints on what FoL expressions appear at those labels

Every man loves a woman.

Ignoring ∃e and n ⊆ e. . .

l1 : ∀x(h2 → h3)
l2 : man(x)
l3 : love(e, x, y)
l4 : ∃y(h4 ∧ h5)
l5 : woman(y)
h2 =q l2, h4 =q l5

Alex Lascarides FNLP Lecture 18c 19

Resolving Scope

l1 : ∀x(h2 → h3)

l2 : man(x)

l3 : love(e, x, y)

l4 : ∃y(h4 ∧ h5)

l5 : woman(y)

h2 =q l2, h4 =q l5

• All hs must equal a (unique) l; no free variables

• So there are two solutions:

∃ outscopes ∀: h2 = l2, h4 = l5, h3 = l3h5 = l1
∀ outscopes ∃: h2 = l2, h4 = l5, h3 = l1, h5 = l3

• LF construction via the grammar must now λ-abstract labels, as well as
predicates, arguments to predicates etc.

Alex Lascarides FNLP Lecture 18c 20

Summary

• Syntax guides semantic composition in a systematic way.

• Lambda expressions facilitate the construction of compositional semantic
interpretations off the syntax tree.

– Associate each word with a λ-term
– Within the grammar, say which daughter is the functor.

• However, semantic scope ambiguities suggest that not all semantic ambiguities
should surface as syntactic ambiguities within the grammar.

• There are solutions to this that exploit semantic underspecification.

Next Lecture: Semantic Role Labelling

Alex Lascarides FNLP Lecture 18c 21

