Foundations of Natural Language Processing Lecture 19b Representing Discourse Coherence

Alex Lascarides
informadotics

So Far

- Understanding discourse involves identifying the coherence relations
- Narration, Explanation, Background, Contrast, Parallel, QA, Correction...
that connect its parts.
- Inferring coherence relations influences
- resolution of pronouns and elided constructions gesture, temporal and spatial inference agreement, disagreement, plausible deniability and vice versa.

Now: How do we formally represent the meaning of discourse?

SDRT: The logical form (LF) of monologue

LF consists of:

1. Set A of labels π_{1}, π_{2}, \ldots (each label stands for a segment of discourse)
2. A mapping \mathcal{F} from each label to a formula representing its content.
3. Vocabulary includes coherence relations; e.g., Elaboration $\left(\pi_{1}, \pi_{2}\right)$.

LFs and Coherence
Coherent discourse is a single segment of rhetorically connected subsegments. More formally:

- The partial order over A induced by \mathcal{F} has a unique root.

An Example

π_{1} : John can open Bill's safe.
π_{2} : He knows the combination.
$\pi_{0}: \quad$ Explanation $\left(\pi_{1}, \pi_{2}\right)$
$\pi_{1}: \quad \iota x\left(\operatorname{safe}(x) \& \operatorname{possess}(x\right.$, bill $) \& \operatorname{can}\left(o p e n\left(e_{1}, j o h n, x\right)\right)$
$\pi_{2}: \quad \iota y($ combination $(y) \& o f(y, x) \& \operatorname{knows}(j o h n, y))$

- Bits in red are specific values that go beyond content that's revealed by linguistic form.
- They are inferred via commonsense reasoning that's used to construct a maximally coherent interpretation.

Unpacking its truth conditions

$\pi_{0}: \quad$ Explanation $\left(\pi_{1}, \pi_{2}\right)$
$\pi_{1}: \quad \iota x\left(\operatorname{safe}(x) \wedge \operatorname{possess}(x\right.$, bill $) \wedge \operatorname{can}\left(\right.$ open $\left(e_{1}\right.$, john, $\left.\left.x\right)\right)$
$\pi_{2}: \quad \iota y($ combination $(y) \wedge o f(y, x) \wedge k n o w s(j o h n, y))$
[$\mathcal{F}\left(\pi_{0}\right)$]iff [Explanation $\left(\pi_{1}, \pi_{2}\right)$]
iff $\mathcal{F}\left(\pi_{1}\right) \wedge \mathcal{F}\left(\pi_{2}\right) \wedge \varphi_{E x p l}\left(\pi_{1}, \pi_{2}\right)$
iff $\iota x\left(\operatorname{safe}(x) \wedge \operatorname{possess}(x, \operatorname{bill}) \wedge \operatorname{can}\left(\right.\right.$ open $\left.\left(e_{1}, j o h n, x\right)\right) \wedge$ $\iota y($ combination $(y) \& o f(y, x) \wedge \operatorname{knows}(j o h n, y)) \wedge$ \wedge cause $\left(e_{\pi_{2}}, e_{\pi_{1}}\right)$

SDRT: Logical form of dialogue Lascarides and Asher (2009)

- LF tracks all current public commitments for each agent, including commitments to coherence relations.
(1) a. $\quad \mathrm{M}$ (to K and S): Karen 'n' I're having a fight,
b. M (to K and S): after she went out with Keith and not me.
c. K (to M and S): Wul Mark, you never asked me out.

Turn	M	K
1	$\pi_{1 M}:$ Explanation (a, b)	\emptyset
2	$\pi_{1 M}:$ Explanation (a, b)	$\pi_{2 K}:$ Explanation $(a, b) \wedge$
Explanation (b, c)		

Dishonesty

(2) a. P: Do you have any bank accounts in Swiss banks?
b. B: No, sir.
c. P: Have you ever?
d. B: The company had an account there for 6 months.

Turn	Prosecutor	Bronston
1	$a: \mathcal{F}(a)$	\emptyset
2	$a: \mathcal{F}(a)$	$\pi_{2 B}: \operatorname{Answer}(a, b)$
3	$\pi_{3 P}:$ Continuation (a, c)	$\pi_{2 B}: \operatorname{Answer}(a, b)$
4	$\pi_{3 P}: \operatorname{Continuation}(a, c)$	$\pi_{4 B}: \operatorname{Answer}(a, b) \wedge \operatorname{Continuation}(a, c) \wedge$ Indirect-Answer (c, d)

1. Plausible Deniability: Must test rigorously whether it's safe to treat the implied answer as a matter of public record.

Dishonesty

(2) a. P: Do you have any bank accounts in Swiss banks?
b. B: No, sir.
c. P: Have you ever?
d. B: The company had an account there for 6 months.

Turn	Prosecutor	Bronston
1	$a: \mathcal{F}(a)$	\emptyset
2	$a: \mathcal{F}(a)$	$\pi_{2 B}: \operatorname{Answer}(a, b)$
3	$\pi_{3 P}:$ Continuation (a, c)	$\pi_{2 B}: \operatorname{Answer}(a, b)$
4	$\pi_{3 P}:$ Continuation (a, c)	$\pi_{4 B}: \operatorname{Answer}(a, b) \wedge$ Continuation (b, d)

1. Plausible Deniability: Must test rigorously whether it's safe to treat the implied answer as a matter of public record.
2. Neologism proof equilibria: distinguishes (2)d vs. "only".

Summary

- The LF of discourse should feature coherence relations
- Rooted and recursive set of labels, each associated with content
- A coherent discourse is a discourse segment in which each of its parts is connected to another part with a coherence relation.
- Coherence relations can be assigned truth conditions and so support automated inference.

Next Time: Computational methods for constructing formal semantic representations of discourse

