

Last week

2

} Phrase-structure (aka constituent) trees

} (Probabilistic) Context free grammars

} CKY algorithm for CFGs

} Today:

} CKY for PCFGs

} Evaluation

} Beyond ”Vanilla” treebank PCFGs

Recap: PCFGs

3

(NP A girl) (VP ate a sandwich)

(VP ate) (NP a sandwich)
(VP saw a girl) (PP with …)

(NP a girl) (PP with ….)

(P with) (NP with a sandwich)

(D a) (N sandwich)

N ! girl

N ! telescope

N ! sandwich

PN ! I

V ! saw

V ! ate

P ! with

P ! in

D ! a

D ! the

S ! NP V P

V P ! V

V P ! V NP

V P ! V P PP

NP ! NP PP

NP ! D N

NP ! PN

PP ! P NP

1.0

p(X ! ↵)Associate probabilities with the rules :

8 X ! ↵ 2 R : 0 p(X ! ↵) 1

8X 2 N :
X

↵:X!↵2R

p(X ! ↵) = 1

0.2
0.4
0.4

0.3
0.5
0.2

1.0

0.2

0.7

0.1

1.0

0.5

0.5

0.6

0.4

0.3

0.7

Now we can score a
tree as a product of
probabilities
corresponding to the
used rules

Probabilistic parsing

4

} We discussed the recognition problem:

} check if a sentence is parsable with a CFG

} Now we consider parsing with PCFGs

} Recognition with PCFGs: what is the probability of the most probable parse
tree?

} Parsing with PCFGs:What is the most probable parse tree?

1.0

0.2

1.0

0.4

0.5

0.2

0.3

0.5 1.0

0.6 0.50.3

0.3 0.7

p(T) =1.0⇥ 0.2⇥ 1.0⇥ 0.4⇥ 0.5⇥ 0.3⇥
0.5⇥ 0.3⇥ 0.2⇥ 1.0⇥ 0.6⇥ 0.5⇥ 0.3⇥ 0.7

= 2.26⇥ 10�5

S

NP

PN

I

VP

V

saw

NP

NP

D

a

N

girl

PP

P

with

NP

D

a

N

telescope

CFGs

5

N ! girl

N ! telescope

N ! sandwich

PN ! I

V ! saw

V ! ate

P ! with

P ! in

D ! a

D ! the

S ! NP V P

V P ! V

V P ! V NP

V P ! V P PP

NP ! NP PP

NP ! D N

NP ! PN

PP ! P NP

1.0

0.2
0.4
0.4

0.3
0.5
0.2

1.0

0.2

0.7

0.1

1.0

0.5

0.5

0.6

0.4

0.3

0.7

Distribution over trees

6

} Let us denote by the set of derivations for the sentence

} The probability distribution defines the scoring over the trees

} Finding the best parse for the sentence according to PCFG:

G(x) x

T 2 G(x)

P (T)

argmax
T2G(x)

P (T)

CKY with PCFGs

7

} Chart is represented by a double array chart[min][max][label]

} It stores probabilities for the most probable subtree with a given
signature

} will store the probability of the most probable full
parse tree

chart[min][max][C]

chart[0][n][S]

Intuition

8

C ! C1 C2

For every choose , and mid such that

is maximal, where and are left and right
subtrees.

C1 C2C

P (T1)⇥ P (T2)⇥ P (C ! C1C2)

T1 T2

Implementation: preterminal rules

9

Implementation: binary rules

10

Unary rules

11

} Similarly to CFGs: after producing scores for signatures (c, i, j), try
applying unary rules (and rule chains)

Unary (reflexive transitive) closure

12

A ! B

B ! C
)

A ! B

B ! C

A ! C

A ! A

B ! B

C ! C

0.1

0.2

0.1

0.2

0.2⇥ 0.1

1

1

1

Note that this is not a PCFG anymore as the
rules do not sum to 1 for each parent

. . .
. . .

Unary (reflexive transitive) closure

13

A ! B

B ! C
)

A ! B

B ! C

A ! C

A ! A

B ! B

C ! C

0.1

0.2

0.1

0.2

0.2⇥ 0.1

1

1

1

Note that this is not a PCFG anymore as the
rules do not sum to 1 for each parent

. . .
. . .

The fact that the rule is composite
needs to be stored to recover the
true tree

Unary (reflexive transitive) closure

14

A ! B

B ! C
)

A ! B

B ! C

A ! C

A ! A

B ! B

C ! C

0.1

0.2

0.1

0.2

0.2⇥ 0.1

1

1

1

Note that this is not a PCFG anymore as the
rules do not sum to 1 for each parent

)
A ! B

B ! C

A ! C

A ! A

B ! B

C ! C

1

1

1

0.1

0.2

1.e� 5

. . .
. . .

A ! B

B ! C

A ! C

0.1

0.1

0.02

The fact that the rule is composite
needs to be stored to recover the
true tree

Unary (reflexive transitive) closure

15

A ! B

B ! C
)

A ! B

B ! C

A ! C

A ! A

B ! B

C ! C

0.1

0.2

0.1

0.2

0.2⇥ 0.1

1

1

1

Note that this is not a PCFG anymore as the
rules do not sum to 1 for each parent

)
A ! B

B ! C

A ! C

A ! A

B ! B

C ! C

1

1

1

0.1

0.2

1.e� 5

. . .
. . .

A ! B

B ! C

A ! C

0.1

0.1

0.02

What about loops, like: ? A ! B ! A ! C

The fact that the rule is composite
needs to be stored to recover the
true tree

Recovery of the tree

16

} For each signature we store backpointers to the elements from which it was
built (e.g., rule and, for binary rules, midpoint)

} start recovering from [0, n, S]

} Be careful with unary rules

} Basically you can assume that you always used an unary rule from the
closure (but it could be the trivial one) C ! C

Speeding up the algorithm (approximate search)

17

} Basic pruning (roughly):

} For every span (i,j) store only labels which have the probability at most N times
smaller than the probability of the most probable label for this span

} Check not all rules but only rules yielding subtree labels having non-negligible
probability

} Coarse-to-fine pruning
} Parse with a smaller (simpler) grammar, and precompute (posterior) probabilities

for each spans, and use only the ones with non-negligible probability from the
previous grammar

Parser evaluation

18

} Intrinsic evaluation:

} Automatic: evaluate against annotation provided by human experts (gold
standard) according to some predefined measure

} Manual: … according to human judgment

} Extrinsic evaluation: score syntactic representation by comparing how
well a system using this representation performs on some task

} E.g., use syntactic representation as input for a semantic analyzer and
compare results of the analyzer using syntax predicted by different parsers.

Though has many drawbacks it is
easier and allows us to track
state of the art across years

Standard evaluation setting in parsing

19

} Automatic intrinsic evaluation is used: parsers are evaluated against
gold standard by provided by linguists

} There is a standard split into the parts:

} training set: used for estimation of model parameters

} development set: used for tuning the model (initial experiments)

} test set: final experiments to compare against previous work

Automatic evaluation of constituent parsers

20

} Exact match: percentage of trees predicted correctly

} Bracket score: scores how well individual phrases (and their
boundaries) are identified

} Crossing brackets: percentage of phrases boundaries crossing

The most standard
measure; we will
focus on it

Brackets scores

21

} The most standard score is bracket score

} It regards a tree as a collection of brackets:

} The set of brackets predicted by a parser is compared against the set
of brackets in the tree annotated by a linguist

} Precision, recall and F1 are used as scores

[min,max,C]

= Subtree
signatures for CKY

Bracketing notation

22

} The same tree as a bracketed sequence

(S

(NP (PN My) (N Dog))

(VP (V ate)

(NP (D a) (N sausage))

)

)

S

NP

PN

My

N

dog

VP

V

ate

NP

D

a

N

sausage

Brackets scores

23

Harmonic mean of precision
and recall

Pr =
number of brackets the parser and annotation agree on

number of brackets predicted by the parser

Re =
number of brackets the parser and annotation agree on

number of brackets in annotation

F1 =
2⇥ Pr ⇥Re

Pr +Re

Preview: F1 bracket score

24

65

70

75

80

85

90

95

Treebank PCFG Unlexicalized
PCFG (Klein and
Manning, 2003)

Lexicalized PCFG
(Collins, 1999)

Automatically
Induced PCFG
(Petrov et al. ,

2006)

The best results
reported (as of

2012)

Preview: F1 bracket score

25

65

70

75

80

85

90

95

Treebank PCFG Unlexicalized
PCFG (Klein and
Manning, 2003)

Lexicalized PCFG
(Collins, 1999)

Automatically
Induced PCFG
(Petrov et al. ,

2006)

The best results
reported (as of

2012)

We will discuss how
to achieve this

Today

26

} Evaluation

} (Treebank) PCFG weaknesses

} PCFG extension: structural annotation

} Directly read-off rules from the treebank:

} The results are not great: around 72% F1

Treebank PCFG

27

S

NP

PN

My

N

dog

VP

V

ate

NP

D

a

N

sausage

S ! NP V P 1

NP ! PN N 1

PN ! My 1

N ! Dog 1

V P ! V NP 1

NP ! D N 1

D ! a 1

N ! sausage 1

In practice, we binarized it
(we discussed this last
Friday)

Weaknesses of (treebank) PCFGs

28

} They do not encode lexical preferences

} They do not encode structural properties (beyond single rules)

} Subject and object NPs are (statistically) very different

} NPs under S vs. NPs under VP

Context-free constraint

29

S

NP

PN

My

N

dog

VP

V

ate

NP

D

a

N

sausage

Independence assumptions
in PCFGs are too strong
for this grammar

} Subject and object NPs are (statistically) very different

} NPs under S vs. NPs under VP

Context-free constraint

30

Many more pronouns as
subjects; prepositional
phrases are much less
frequent within subjects

Types of NP NP PP D N PN

All NPs 11% 9% 6%

NPs under S (subjects) 9% 9% 21%

NPs under VP (objects) 23% 7% 4%

} Subject and object NPs are (statistically) very different

} NPs under S vs. NPs under VP

Context-free constraint

31

S

NP

PN

My

N

dog

VP

V

ate

NP

D

a

N

sausage

How can we modify the grammar?

S

NPˆS

PN

My

N

dog

VP

V

ate

NPˆVP

D

a

N

sausage

} Subject and object NPs are (statistically) very different

} NPs under S vs. NPs under VP

Context-free constraint

32

Structural annotation,
specifically grandparent
annotation [Johnson
98]

S

NP-dog

PN

My

N

dog

VP

V

ate

NP-sausage

D

a

N

sausage

} Subject and object NPs are (statistically) very different

} NPs under S vs. NPs under VP

Context-free constraint

33

Lexicalization
[Collins 99]

S

NP-dog

PN

My

N

dog

VP

V

ate

NP-sausage

D

a

N

sausage

} Subject and object NPs are (statistically) very different

} NPs under S vs. NPs under VP

Context-free constraint

34

Lexicalization
[Collins 99]

Recall: instead of transforming the grammar we
can see this in terms of transforming trees (on
preprocessing) and then inducing a PCFG from

the transformed treebank

We will get back to it tomorrow,
as it is closely related to dep

parsing

Today

35

} Evaluation

} (Treebank) PCFG weaknesses

} PCFG extension: structural annotation

Approaches to enriching a grammar

36

} Structural annotation [Johnson 98, Klein and Manning 03]

} Lexicalization [Collins 99, Charniak 00]

} There was a period in natural language processing when many researchers
abandoned PCFGs and focused on richer modeling of context (history-based
models) instead

} … but later research has showed that high accuracy can be achieved with PCFGs
if an appropriate grammar is chosen

Also known as
grammar
transforms

Approaches to enriching a grammar

37

} Structural annotation [Johnson 98, Klein and Manning 03]

} Lexicalization [Collins 99, Charniak 00]

} There was a period in natural language processing when many researchers
abandoned PCFGs and focused on richer modeling of context (history-based
models) instead

} … but later research has showed that high accuracy can be achieved with PCFGs
if an appropriate grammar is chosen

Also known as
grammar
transforms

Vertical Markovization

38

} Rule applications depend on past ancestors in the tree (not only
parents) [Johnson 98]

S

NP

PN

My

N

dog

VP

V

ate

NP

D

a

N

sausage

S

NPˆS

PN

My

N

dog

VPˆS

V

ate

NPˆVP

D

a

N

sausage
(Vertical) order 1

Vertical order 2

Recall, 1st and 2nd
order HMMs, a
similar idea

} Compare 2 configurations from a recent lecture:

} Close attachment is a-priori more likely (at least in Penn Treebank)

} Here they mean almost the same things (as the box in the box implies that
box is also on the table)

} … but consider:

NP

NP

NP

D

the

N

block

PP

P

in

NP

D

the

N

box

PP

P

on

NP

D

the

N

table

PCFG weakness: Close Attachment

39

NP

NP

D

the

N

block

PP

P

in

NP

NP

D

the

N

box

PP

P

on

NP

D

the

N

table

Close
attachment

PCFG weakness: Close Attachment

40

NP

NP PP

P NP

NP PP

P NP

Can PCFG give a preference to one or another
structure?

Close
attachment

NP

NP

NP PP

P NP

PP

P NP

PCFG weakness: Close Attachment

41

No, the same rules are used in both constructions, so a PCFG
is guaranteed to return the same scores!

NP

NP PP

P NP

NP PP

P NP

Can PCFG give a preference to one or another
structure?

Close
attachment

NP

NP

NP PP

P NP

PP

P NP

PCFG weakness: Close Attachment

42

No, the same rules are used in both constructions, so a PCFG
is guaranteed to return the same scores!

NP

NP PP

P NP

NP PP

P NP

Can PCFG give a preference to one or another
structure?

Close
attachment

Would vertical Markovization help here (encode preference
for close attachment)?

NP

NP

NP PP

P NP

PP

P NP

NPˆ?

NPˆNP PPˆNP

P NPˆPP

NPˆNP PPˆNP

P NPˆPP

From the treebank, the enriched PCFG will assign higher probability to the rule

than to the rule

PCFG weakness: Close Attachment

43

Close
attachment

NPˆ?

NPˆNP

NPˆNP PPˆNP

P NPˆPP

PPˆNP

P NPˆPP

NPˆNP ! NPˆNP PPˆNP

NPˆPP ! NPˆNP PPˆNP

Consequently,
higher accuracy (in
average) is
expected

Vertical Markovization

44

[In this lecture some
illustrations are adapted
from Dan Klein](Vertical) order 1Selected histories

Recall binarization (transformation to CNF form)

45

NP

DT

the

NNP

Dutch

VBG

publishing

NN

group

NP

DT

the

@NP-> DT

NNP

Dutch

@NP-> DT NNP

VBG

publishing

@NP-> DT NNP VBG

NN

group

Can be regarded as
horizontal history

Recall binarization (transformation to CNF form)

46

NP

DT

the

NNP

Dutch

VBG

publishing

NN

group

NP

DT

the

@NP-> DT

NNP

Dutch

@NP-> DT NNP

VBG

publishing

@NP-> DT NNP VBG

NN

group

Can be regarded as
horizontal history

In vertical Markovization we
increased context, in horizontal

Markovization we want to
reduce it

Recall binarization (transformation to CNF form)

47

NP

DT

the

@NP-> DT

NNP

Dutch

@NP-> DT NNP

VBG

publishing

@NP-> DT NNP VBG

NN

group

Horizontal order

NP

DT

the

@NP-> DT

NNP

Dutch

@NP-> NNP

VBG

publishing

@NP-> VBG

NN

group

h = 1Horizontal order h = 1

Recall binarization (transformation to CNF form)

48

NP

DT

the

@NP-> DT

NNP

Dutch

@NP-> DT NNP

VBG

publishing

@NP-> DT NNP VBG

NN

group

Horizontal order

NP

DT

the

@NP-> DT

NNP

Dutch

@NP-> NNP

VBG

publishing

@NP-> VBG

NN

group

h = 1Horizontal order h = 1

Can we do both?

49

S

NP

DT

The

NNP

German

NN

carrier

VP

VP

VBZ

operates

PP

IN

from

NP

NNP

Berlin

S

NPˆS

DT

The

NNP

German

NN

carrier

VPˆS

VPˆVP

VBZ

operates

PPˆVP

IN

from

NPˆPP

NNP

Berlin

Can we do both?

50

Vertical order v = 2

S

NPˆS

DT

the

@NPˆS-> DT

NNP

German

@NPˆS-> DT NNP

NN

carrier

@S-> NP

VPˆS

VPˆVP

VBZ

operates

VPˆS-> VP

PPˆVP

IN

from

PPˆVP-> IN

NPˆPP

NNP

Berlin

Can we do both?

51

Vertical order v = 2

Horizontal order h = 1

S

NPˆS

DT

the

@NPˆS-> DT

NNP

German

@NPˆS-> NNP

NN

carrier

@S-> NP

VPˆS

VPˆVP

VBZ

operates

VPˆS-> VP

PPˆVP

IN

from

PPˆVP-> IN

NPˆPP

NNP

Berlin

Can we do both?

52

Vertical order v = 2

Horizontal order h = 1

Vertical and Horizontal Markovization

53

0 1 2v 2 inf
1

2

3

66%
68%
70%
72%
74%
76%
78%
80%

Horizontal Order

Vertical
Order

Around 78%, compare with 72% for the
original treebank PCFG

Vertical and Horizontal Markovization

54

0 1 2v 2 inf
1

2

3

66%
68%
70%
72%
74%
76%
78%
80%

Horizontal Order

Vertical
Order

Around 78%, compare with 72% for the
original treebank PCFG

Any idea how we can improve this
using techniques we discussed?

} PoS tags in Penn Treebank are too coarse

} Very obvious for IN tag:

} Assigned both to 'normal' prepositions (to form a prepositional
phrase) – in, on, at, … –

} and to subordinating conjunctions (e.g., if)

} E.g., check if advertising works

} This change alone leads to a 2% boost in performance:

} from 78.2 to 80.3

Splitting: PoS tags

55
[Klein and Manning 2003]

} Split determiners: on demonstrative ("those") and others (e.g., "the",
"a")

} Split adverbials: on phrasal and not ("quickly" vs. "very")

} …

Splitting: other symbols

56
[Klein and Manning 2003]

All these changes (and a couple of other ones)
lead to 86.3 % F1, a very respectable (and
maybe even surprising) performance for an

unlexicalized PCFG model

Preview: F1 bracket score

57

65

70

75

80

85

90

95

Treebank PCFG Unlexicalized
PCFG (Klein and
Manning, 2003)

Lexicalized PCFG
(Collins, 1999)

Automatically
Induced PCFG
(Petrov et al. ,

2006)

The best results
reported (as of

2012)

} Learning types of nonterminals from data, i.e. automatically enriching
the grammar (Latent-annotated PCFGs, LA-PCFG)

} One can think of this as a type of clustering of tree contexts of non-terminal
symbols

Alternative ideas: inducing splits (through EM)

58

S

NP-156

PN-1

My

N-652

dog

VP-112

V-134

ate

NP-5

D-6

a

N-176

sausage

[Matsuzaki et al., 2005,
Petrov et al., 2006] Around 90% F1

} A rule probability is not constant but predicting for a given span in
the chart

} E.g., a neural network predicts the probability of a rule for a specific operation
of the chart

Alternative ideas: anchored rules

Instead use:

Up to 97% F1
First in Cross and
Huang (2016)

Summary

60

} PCFGs for statistical parsing

} Dynamic programming algorithm for parsing with PCFGs

} Vanilla treebank PCFGs parser is (very) weak

} … but can be improved to produce a very strong system

} CKY is an important tool, used in many applications

