

Neural models and word embeddings

Neural models and word embeddings

One-hot vectors as word representations

Issues:
- very high dimensional
- do not capture semantic

similarity between words
(recall last lecture)

Recap: latent semantic analysis

Recall: to make it work
reasonably well, you need
something more sophisticated
(e.g., PMI)

Latent Semantic Analysis

This is either the ‘raw’ co-
occurrence matrix N, or its
transformations (e.g., PMI)

Latent Semantic Analysis

Hard to scale, any alternative?

Prediction-based (aka neural) methods

Prediction-based (aka neural) methods

Prediction-based (aka neural) methods

Prediction-based (aka neural) methods

What we discuss is Mikolov’s Skipgram but there
several variations on this idea

How do we calculate the probabilities ?

For each word w we have
two vectors:
- when it is a central word
- when it is a context word

How do we calculate the probabilities ?

The probability of the context word o given the central word c is

This is the softmax function

Back to our example

Back to our example

Back to our example

Back to our example

Back to our example

Back to our example

What do we optimize?

How do we optimize the model?

We rely on gradient descent (recall the Logistic Regression lecture)

In practice, we optimize one word at a time:

How do we optimize the model?

How do we optimize the model?

How do we optimize the model?

How do we optimize the model?

Making learning more efficient

Making learning more efficient

Negative sampling

the logistic sigmoid function

Negative sampling

the logistic sigmoid function

“Positive examples” “Negative examples”

Converted to binary classification: predict ”+” for (central, real context) pairs,
and “-” for (central, random context)

How to select negative samples?

The basic idea is to select random words based on their (unigram) frequency in a
corpus, what are the issues and how can this be improved?

How to select negative samples?

The basic idea is to select random words based on their (unigram) frequency in a
corpus, what are the issues and how can this be improved?

• “Flatten” the unigram distribution to make sure infrequent
words get sampled (recall Zipf’s distribution)

• Don’t generate compatible contexts
• Make sure you generate “hard” negative examples, to learn

informative word representations
Negative sampling is an important
technique used in many contexts in
NLP/ML, often with these mods

Variations of Word2Vec

Generally, word2vec was far from the first idea of
learning embedding, its success is largely due to
simplicity (+ the efficient implementation and stability)

It is possible to show that optimizing the skipgram objective (with the negative
sampling modification) corresponds to factorizing PMI matrix (Levy & Goldberg

2014)

Relation to LSA

Evaluation (~ recap)

Intrinsic

Use embeddings to represent tokens within models for
downstream tasks (e.g., sentiment classification, question
answering, …)

Extrinsic
• Relatedness
• Word associations
• Analogy

As we will see soon the low-dimensional vectors
produced by neural methods are much ‘friendlier’
to downstream applications than sparse counts

Analogy

Analogy: semantic relations

Analogy: syntactic relations

Why makes word2vec represent relations in such
linear way? See a paper by an Edinburgh student:
Analogies Explained: Towards Understanding Word
Embeddings, Allen & Hospidales, ICML 2019

There are some important caveats about
the analogy benchmarks and
visulaizations:
https://aclanthology.org/N18-2039/

https://proceedings.mlr.press/v97/allen19a/allen19a.pdf
https://proceedings.mlr.press/v97/allen19a/allen19a.pdf
https://aclanthology.org/N18-2039/

Summary for today

Neural embeddings can be efficiently learned from large
collections of unannotated texts (‘self-supervision’)

Many algorithms, and important hyperparameter choices
(windows sizes, numbers of negatives samples)

Useful in practice and have some intriguing properties

Preferable over raw count-based method but:
- how do we handle multiple senses? (ambiguity)
- how do we encode longer spans of text? (compositionality)

https://lena-voita.github.io/nlp_course.html

Check out Lena Voita’s online resource – NLP class for you:

