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One-hot vectors as word representations

Issues:
- very high dimensional
- do not capture semantic 

similarity between words 
(recall last lecture)



Recap: latent semantic analysis

Recall: to make it work 
reasonably well, you need 
something more sophisticated 
(e.g., PMI)



Latent Semantic Analysis

This is either the ‘raw’ co-
occurrence matrix N, or its 
transformations (e.g., PMI)



Latent Semantic Analysis

Hard to scale, any alternative?
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Prediction-based (aka neural) methods

What we discuss is Mikolov’s Skipgram but there 
several variations on this idea



How do we calculate the probabilities                ?

For each word w we have 
two vectors:
- when it is a central word
- when it is a context word



How do we calculate the probabilities                ?

The probability of the context word o given the central word c is 

This is the softmax function



Back to our example
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What do we optimize?



How do we optimize the model?

We rely on gradient descent (recall the Logistic Regression lecture)

In practice, we optimize one word at a time:



How do we optimize the model?
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Making learning more efficient



Making learning more efficient



Negative sampling

the logistic sigmoid function 



Negative sampling

the logistic sigmoid function 

“Positive examples” “Negative examples”

Converted to binary classification: predict ”+” for (central,  real context) pairs, 
and “-” for (central, random context)



How to select negative samples?

The basic idea is to select random words based on their (unigram) frequency in a 
corpus, what are the issues and how can this be improved?



How to select negative samples?

The basic idea is to select random words based on their (unigram) frequency in a 
corpus, what are the issues and how can this be improved?

• “Flatten” the unigram distribution to make sure infrequent 
words get sampled (recall Zipf’s distribution)

• Don’t generate compatible contexts
• Make sure you generate “hard” negative examples, to learn 

informative word representations
Negative sampling is an important 
technique used in many contexts in 
NLP/ML, often with these mods



Variations of Word2Vec

Generally, word2vec was far from the first idea of 
learning embedding, its success is largely due to 
simplicity (+ the efficient implementation and stability)



It is possible to show that optimizing the skipgram objective (with the negative 
sampling modification) corresponds to factorizing PMI matrix (Levy & Goldberg 

2014)

Relation to LSA



Evaluation (~ recap)

Intrinsic

Use embeddings to represent tokens within models for 
downstream tasks (e.g., sentiment classification, question 
answering, …)

Extrinsic
• Relatedness 
• Word associations
• Analogy

As we will see soon the low-dimensional vectors 
produced by neural methods are much ‘friendlier’ 
to downstream applications than sparse counts



Analogy



Analogy: semantic relations



Analogy: syntactic relations

Why makes word2vec represent relations in such 
linear way?  See a paper by an Edinburgh student:  
Analogies Explained: Towards Understanding Word 
Embeddings, Allen & Hospidales, ICML 2019 

There are some important caveats about 
the analogy benchmarks and 
visulaizations: 
https://aclanthology.org/N18-2039/

https://proceedings.mlr.press/v97/allen19a/allen19a.pdf
https://proceedings.mlr.press/v97/allen19a/allen19a.pdf
https://aclanthology.org/N18-2039/


Summary for today

Neural embeddings can be efficiently learned from large 
collections of unannotated texts (‘self-supervision’)

Many algorithms, and important hyperparameter choices 
(windows sizes, numbers of negatives samples)

Useful in practice and have some intriguing properties

Preferable over raw count-based method but:
- how do we handle multiple senses? (ambiguity)
- how do we encode longer spans of text? (compositionality)

https://lena-voita.github.io/nlp_course.html

Check out Lena Voita’s online resource – NLP class for you:


