Foundations for Natural Language Processing

Neural Embeddings

lvan Titov
(with graphics/materials from Elena Voita)

® School of

informatics

Neural models and word embeddings

__

Any algorithm for solving a task

..

Word representation - vector
(input for your model/algorithm)

I&a}; Sequence of tokens
A

I saw a cat. Text (your input)

Neural models and word embeddings

| | Embedding

Token index in dimension

the vocabulary < >

A
39 1592 10 2548 5 Vocabulary
39

. size
I saw a cat J

One-hot vectors as word representations

Oneis1,therestare0

|

dog [0.0.010..0.0 Issues:
- very high dimensional
cat 0.010..0..0..0 - do not capture semantic
table [0 0 0 0010 similarity between words

(recall last lecture)

Embedding dimension =
vocabulary size

2-sized window for cat

| 1

I saw a cute grey cat playing in the garden

\/

contexts for cat

Context:
* surrounding words Recall: to make it work
in a L-sized window
reasonably well, you need
Matrix element: something more sophisticated
(e.g., PMI)

 N(w, ¢) — number of
times word w appears
INn context ¢

Latent Semantic Analysis

columns represent
potential contexts

v
FOWS
represent — This is either the ‘raw’ co-
words occurrence matrix N, or its

transformations (e.g., PMI)

each element says about
the association between a
word and a context

Latent Semantic Analysis

columns represent context
potential contexts word vectors
| vectors
rOws
represent —
words ~
V, Y4 Ul

each element says about
the association between a

Reduce dimensionality:
word and a context y

Truncated Singular Value Decomposition (SVD)

Hard to scale, any alternative?

P(wi_o|we) P(we—q|wi) P(Wepq|wi) P(Wego|wy)

I saw a cute grey cat playing in the garden

Wi Wi1 We Wiyq Wit2

central
word

P(wWi_z|wi) P(Wi_1|we) P(Wegq|we) P(Wepz|we)

I saw a cute grey cat playing in the garden

Wiy Wieq1 Wg Wii1 Wiy2

central
word

P(wi_s|we) P(We—q|we) P(Wepq|we) P(Wego|wy)

I saw a cute grey cat playing in the garden

Wip Wieq1 Wi Wei1 Wiy2

central
word

P(wi_s|wi) Pwi—q|wi) P(Wesq|we) P(Wego|wy)

I saw a cute grey cat playing in the garden

W2 Wi-1 Wt Wit+1 Wiy2

central
word

What we discuss is Mikolov’s Skipgram but there
several variations on this idea

How do we calculate the probabilities P(we,;jw:,6) ?

Thisis our 8!
Allv, and u, together

central context

words: v, words: u, For each word w we have

A two vectors:
Vocabulary when !t is a central word
size - when it is a context word

cat

>
”

pd
~

~

Embedding dimension

How do we calculate the probabilities P(ws,;jw:,6) ?

The probability of the context word o given the central word c is

Dot product: measures similarity of o and ¢
<« Larger dot product = larger probability

T
exp(uo V)
ZWEV exp(u\?vvc)
~~__ Normalize over entire vocabulary
to get probability distribution

P(o|c) =

This is the softmax function

Back to our example

P (ullva) P (usawlva) P (ucutelva) P (ugreylva)

AN O\

I saw a cute grey cat playing in the garden

Wiy Wir1 W Wiyq Wti2

Saw
cute

grey

Back to our example

P (usawlvcute) P (ualvcute) P (ugreylvcute) P (ucatlvcute)

VN

I saw a cute grey cat playing in the garden

Wi Wi W Weyq Wti2

Saw

cute

cat
grey

Back to our example

P(ualvgrey) P(ucutelvgrey) P(ucatlvgrey) P(uplayinglvgrey)

N

I saw a cute grey cat playing in the garden

Wi Wi Wi Wti1 Wiy

cute

cat
playing

grey

Back to our example

P(ucutelvcat) P(ugreylvcat) P(uplayinglvcat) P(uinlvcat)

NN

I saw a cute grey cat playing in the garden

Wi Wi Wi Wii1 Wii2

cute

cat

grey
playing

Back to our example

P(ugreylvplaying) P(ucatlvplaying) P(uinlvplaying) P(uthelvplaying)

N N

I saw a cute grey cat playing in the garden

Wi Wi Wt Wir1 Weyg2

the

cat
grey

playing

Back to our example

P(ugreylvin) P(ucae|vin) Puin|vin) PQuenelvin)

N

I saw a cute grey cat playing in the garden

Wi_2 We_1 We Wipq Wiy2

the

cat

playing
garden

What do we optimize!

1
055 = (6) = — = 10gL() = ——2 z log P(w, /|w,, 6)

t=1 —m<]<m
V- \
—> goover text with a sliding compute probability of the
window context word given the central

agrees with our
plan above

We rely on gradient descent (recall the Logistic Regression lecture)
grev = gold _ aVeJ(6).

In practice, we optimize one word at a time:

= T
_% Z Z log P(wyj|wy, 8) = % Z Z Jt,5(0)

t=1 —m<j<m,j#0 t=1 —m<j<m,j#0

I saw a cute grey cat playing in the garden

T
exp ucute

>, expul

weVoc

Ji;(0) = —log P(cute|cat) = —log

I saw a cute grey cat playing in the garden

T
exp ucute

>, expul

weVoc

Ji;(0) = —log P(cute|cat) = —log

—ul . Ve + log Z exp

weVoc

Note which parameters are present at this step:

e from vectors for , only ;
e from vectors for context words, all u,, (for all words in the vocabulary)

I saw a cute grey cat playing in the garden

]t,j(g) = _ugutevcat + log 2 exp(ugvvcat)
| wWEV

L J

@ 2)

make an update

d];(6)
(04

OVear

d]:,;(0)

dul,,

Veat *= Vecat —

Uy:=1U, — A VwevV

I saw a cute grey cat playing in the garden

]t,j(e) = _u;rutevcat + log Z exp(u\?vvcat)
| wWEV

L J

@ 2)

make an update

ua/ﬂ’cat
) ul v | CECrease
,_ 9 S

Vcat *= Vcat a I tel | (ulyevear| INCrease

cat | . 7
d]:;(0) ‘ decrease

Uy:i=1U, — « (3’111 VweV U Vear |

w

Making learning more efficient

Dot product of v, :
e with u,,: -increase,
« with all other u - decrease

T -
Uw1 Vcat

Wl | ClECrease
t increase

cat [: 1
§§ . decrease

UwnVcat

Parameters to be updated:

Vcat
° u, forallwin I\VV| + 1 vectors
the vocabulary

Dot product of v, ,;: Dot product of v,;:

* Wwith u,,: -iNncrease, e with u,.,;. - iNnCrease,
 with all other u - decrease * with a subset of other u - decrease

Negative samples: randomly
selected K words

Up1Veat | Vet | decrease
Wl | ClECrease ul Doas
te increase t ¢ increase
cat | 1 o [] u\{v Vcat]
'§ : decrease _ P decrease
u;/rvnvcat i Uw,k Vcat
v u 1% u
Parameters to be updated: Parameters to be updated:
Vcat * Vcat
° u, forallwin I\VV| + 1 vectors ° Ugyte and u,, forw K+ 2 vectors

the vocabulary in K negative examples

Negative samples: randomly
selected K words

Ve | decrease
ufvizvcat |
t increase
cat 7
Hw,Veat | docrease
u»Tvl-Kvmt
v u
J: i(0) = —logo(ul ;. vear) — log(1 — o(ul, o))
,i(8) = —loga(ul,,.v.. g wVeat
/ we{wilr"’wi[{}
1 | T T

0'(:13) — 1+e~*

the logistic sigmoid function //

Negative samples: randomly
/ selected K words

.)
Uwiy Veat decrease
’ uaizvcat
t increase
cat " -
Uy . V-
e “ 1 decrease
lLWiKUC(lt

Converted to binary classification: predict ”+” for (central, real context) pairs,
and “-” for (central, random context)

“Positive examples™ “Negative examples”
Jt,j(e) - = log o-(uccrutevcat) T Z log(l o a(ugvcat))
/ WE{ Wiy 5 - - Wig }
1 .
O'(w) p— 1re—=® = |
the logistic sigmoid function //

0 1
-6 -4 -2 0 2 4 6

Negative samples: randomly
/ selected K words

T
uw” Vcat

decrease
J u\tqz Vcat
P E m— increase
cat K N .
e “\[V[Vcat
e decrease
T
UW”\, Vcat
1Y u

The basic idea is to select random words based on their (unigram) frequency in a
corpus, what are the issues and how can this be improved?

Negative samples: randomly
/ selected K words

Uy,

l

: cat | decrease

“wul cat

T TRpa
cdtel T | UsyteVeat INCrease
at K - .
cat 7 ,
Uwi,_, Vcat

decrease

T 7
“w,,\' Vcat

The basic idea is to select random words based on their (unigram) frequency in a
corpus, what are the issues and how can this be improved?

“Flatten” the unigram distribution to make sure infrequent
words get sampled (recall Zipf’s distribution)
* Don’t generate compatible contexts

Make sure you generate “hard” negative examples, to learn
informative word representations

Negative sampling is an important
technique used in many contexts in
NLP/ML, often with these mods

cat

Skip-Gram: from central predict context

I saw a cute grey cat playing in the garden

cat
L
cute grey playing in
———in
[1 cute
grey
playing
% u

(one atatime)

cute grey playing in

\ ca17

in sum
Ccute
\: cat
grey
playing

u

v

CBOW: from sum of context predict central

Generally, word2vec was far from the first idea of
learning embedding, its success is largely due to
simplicity (+ the efficient implementation and stability)

It is possible to show that optimizing the skipgram objective (with the negative

sampling modification) corresponds to factorizing PMI matrix (Levy & Goldberg
2014)

T
Likelihood =L(®) = [[] Pwssjlw:,6)

columns represent context
potential contexts word vectors
| vectors
rows
represent —

words

Q

Evaluation (~ recap)
As we will see soon the low-dimensional vectors

produced by neural methods are much ‘“friendlier’
Intrinsic to downstream applications than sparse counts

Use embeddings to represent tokens within models for
downstream tasks (e.g., sentiment classification, question
answering, ...)

Extrinsic
 Relatedness

* Word associations
* Analogy

08 token: red
=8 token: blue
token: pink
{ token: green ;
. token: white

O)
token: black (L

token: color

semantic: v(king) - v(man) + v(woman) = v(queen)
SYNtactic: y(kings) - v(king) + v(queen) ~ v(queens)

WOMAN

/ AUNT QUEENS
MAN /

UNCLE KINGS \
QUEEN \ QUEEN

KING KING

Country and Capital Vectors Projected by PCA

I I 1 I

China:
‘Beijing
~ Russia:
Japan
- ‘Moscow
Turkey Ankara ~Tokyo
Poland:
- Germany-
France "Warsaw
. Berlin
= Italy Paris
» —Athens
Greece
| Spain Rome
- Portugal Lisbo?adrid

05 T T T T T T T T T
_ — — — slowest
0.4+ | e T 1
. “slower - shortest
STSONSE
03k 7 //'s_horter i
’ slow« s
7
7
short<
0.2]
0.1+ 4
or J/stronger” T T T T = - - — - strongest 7
/7
4 _-Touder ~ T T T — - — — - _ _ _ .
strong < P loudest
—'01 I~ IOUd}‘_/ _______ m
. Clearer = T T T T = - = - - — clearest
“~softerr = — — — — — — _ _
il soffe™ = = T - - - . softest
-0.2f AR~ I -
: clear =~ - darker ~ - - - - _ _ _ _ _ | darkest
soft = arkes
dark~
-0.3 L 1 1 1 I 1 |]]
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

Why makes word2vec represent relations in such

linear way? See a paper by an Edinburgh student:
Analogies Explained: Towards Understanding Word

Embeddings, Allen & Hospidales, ICML 2019

There are some important caveats about
the analogy benchmarks and
visulaizations:

https://aclanthology.org/N [8-2039/

https://proceedings.mlr.press/v97/allen19a/allen19a.pdf
https://proceedings.mlr.press/v97/allen19a/allen19a.pdf
https://aclanthology.org/N18-2039/

Neural embeddings can be efficiently learned from large
collections of unannotated texts (‘self-supervision’)

Many algorithms, and important hyperparameter choices
(windows sizes, numbers of negatives samples)

Useful in practice and have some intriguing properties
Preferable over raw count-based method but:

- how do we handle multiple senses? (ambiguity)
- how do we encode longer spans of text! (compositionality)

Check out Lena Voita’'s online resource — NLP class for you:

https://lena-voita.github.io/nlp_course.html

