Foundations for Natural Language Processing

Neural Classifiers

lvan Titov
(with graphics/materials from Elena Voita)

® School of

informatics

Neural models and word embeddings

__

Any algorithm for solving a task

..

Word representation - vector
(input for your model/algorithm)

I&a}; Sequence of tokens
A

I saw a cat. Text (your input)

Last time: embeddings with neural predictors

P(ucutelvcat) P(ugreylvcat) P(uplayinglvcat) P(uinlvcat)

NN

I saw a cute grey cat playing in the garden

Wi Wi Wi Wii1 Wii2

T
exXp U, ;. Vcat
in P(cute|cat) = — log cute ;a
Z exp uwvcat
weVoc
cute
cat
grey
playing

Last time: intriguing properties

token: red

token: blue

token: pink

token: green

token: black

token: color

1.5

0.5

-0.5

-2

Country and Capital Vectors Projected by PCA

! Chinac-—..._ ‘ ----------- |
---------------- ~Beijing
L Russia-—...
Japan-...
T e T ~“»Moscow
Tukey “Ankara ~Tokyo
Poland<--...._
N GermxanY" ~~~~~~~~~~~~~~~
France Warsaw
L falye-—.. ore
. pthens
reece
e Rome
et ~“»Madrid
FPortugal Lisbon
1 1 L L I I I
2 15 - 05 0 05 1 15

General Classification Pipeline

—_—

P(class =k|I liked...<eos>)

Classification
method

8 h: feature
o| representation
© of the text

Feature extractor
(e.g., hand-crafted
or neural network)

!

I liked the cat . <eos>

get probability
distribution
over classes

process text
(document)

OO0O0O0

<—— h:featurerepresentation
of the text

Some manual
features (e.g., BOW)

[

I liked the cat <eos>

Note: here, we are using an equivalent but notationally different definition
of the logistic regression

w,: feature weights
for class k

Weigh features: take h @)
dot-product of h wy(06 00 0]-w,h(+by ©
with feature weights ws(@@e0)-wsh(+by) ©

for each class

00O

<—— h:featurerepresentation
of the text

Some manual
features (e.g., BOW)

[

I liked the cat <eos>

Note: here, we are using an equivalent but notationally different definition
of the logistic regression

w,: feature weights
for class k

Weigh features: take h 9 softmax
qr?t]:c—product of 2 wy(0 00 o0])-wyh(+by O
with feature weights ws([@000)-wsh(+bs) ©

for each class

00O

<—— h:featurerepresentation
of the text

Some manual
features (e.g., BOW)

[

I liked the cat <eos>

P(class=k| I liked...<eo0s>)

— P(| I liked...<eos>)
:Ij P(class=2|1I liked...<eos>)
| P(class=3|I liked...<eo0s>)

softmax:

exp(w® 1)

K .
> exp(w®h)
i=1

P(class = k|h) =

Note: here, we are using an equivalent but notationally different definition

of the logistic regression

Classification with Neural Networks

— K classes
get probability P(class=k]..)
distribution d-sized Linear |© |softmax ——
—
over classes vector layer o | =
B ol h:feature
o| representation
°] ofthetext

process text

(document) Neural Network

<— Token embeddings

[O0 O O]
(000 0]
[O0 O O]
[O0 QO]
[O0 O O]
(000 O]

—-—

I liked the cat . <eos> <— [nputtext

Classification with Neural Networks

— K classes

get probability P(class=k]| ..)
distribution d-sized Linear 8 |softmax —
over classes vector layer Jo | —

h: feature
representation
of the text

I
(0000]

process text

(document) Neural Network

o ,
o <— [oken embeddings
o

of lof o |o |o

I liked the cat . <eos> <— [nputtext

[eXexexel
000
000
000
000

—-—

The highlighted part is the logistic regression!

K classes

P(class=k|...)
d-sized | |Linear|S softmax —— | P(| I liked..<eo0s>)
vector T 1aver L1 | P(class=2]T1I liked..<eo0s>)
Yeo [P(class=3|1I liked...<eo0s>)
: feature 8 This is Logistic R]
of the text =
w,: feature weights
for class k
Neural Network
® softmax [1
w, (00 00)-wyh(+by) © E—

ws (@00 0]+ wsh(+by) ©

0000
[0 0 0]
[00 00|
[0000]
[0000]
[00O0]

Weigh features: take dot-
product of h with feature
welghts for each class

OO0 OO0

Input te I liked the cat . <eos>

K classes

P(class=k] ..)
d-sized | |Linear|© |softmax —— | P(| I liked..<eo0s>)
vector T laver I P(class=2|IIiked...<eos>)
ver o | — P(class=3|TI liked...<eos>)
: feature °
: = . . S
representation 5 This is Logistic Regression!
of the text °
w,: feature weights
for class k
Neural Network L
| © lsoftmax
w, (00 00)-wyh(+by) © =
Token o [o] [o] [[o [0 w3z (0000])+wsh(+b;) @.
it ol ol 1ol lo] |o o
crroedd \”1, e e 0) 0 0 0 O
o O [© O 19 [8 Weigh features: take dot-
0

Input te I liked the cat . <eos>

product of h with feature
welghts for each class

Intuition: the representation of the document points in the
direction of the class representation

VeCctors Wi, Wy, W3

OT Linear o ' 4
@) O o] (o) [¢)
OX |ayer OXOOO + b2
o) o olo|e b3
|- vector , W», W3 - vector
representation of representations of
the input text classes

Intuition: the representation of the document points in the
direction of the class representation

O} for texts of
oJlclasses 1, 2,3

Optimize conditional log-likelihood, as with logistic regression, which is
equivalent to using cross-entropy loss

Training example: I liked the cat on the mat <eos> Label: k
target
Model prediction: Target: Cross-entropy loss:
P(class =i |TI liked...<eo0s>) P’ K
— 0 —pr'logP(y=iIx)—>min (b = Lp; =0,i # k)
— <«<— k — [1] i=1
\ \ 0
P;| 8 For one-hot targets, this is equivalent to

—logP(y = k|x) - min

The target distribution is one-hot:

p*=(0,...,0,1,0,...)

Recall: we derived the gradient, and observed some
problems

What do we optimize!

Optimize conditional log-likelihood, as with logistic regression

Feed a text to the
Neural Network network

I liked the cat . <eos>
we want the model
to predict this

Correct label: 4 <—

(video, not visible in pdf)

d-sized vector Kclasses

P(class=k| ...
n:vector o
i O | softmax
representation — |3} I_llnear °] > =
of the text o ayer Jo | -

Neural Network | = Whatis here?

I liked the cat . <eos>

000

0000
00O
000
000

0000

Basic models: bags of words (= Embeddings)

Sum of embeddings
(Bag of Words, Bag of Embeddings)

<— h:vector representation of the input text

Token embeddings
(Word2Vec, GloVe, etc)

I liked the cat . <e0s> <«— [nputtext

—

Basic models: bags of words (= Embeddings)

Weighted sum of embeddings
(e.g., using tf-idf weights)

tf-idf(w, d, D) =tf(w, d) - idf(w, D)

. d‘/ 1 >)
(w, d) %8\(deD: w €D
term frequency inverse document
frequency

O O O O (O =—tf-idf(wordw, textd, corpus D)
X X X X X X

O O O O O O

O O O O O O

@) @) @) O O O

I liked the cat . <eos>

Translational invariance

5 B
g || %] g

Label: cat Label: cat Label: cat Label: cat Label: cat

We don’t care where the cat s,
we care thatitis somewhere.

Then why don't we process all
these cats similarly?

(video, not visible in pdf), taken from
https://github.com/vdumoulin/conv arithmetic

https://github.com/vdumoulin/conv_arithmetic

» |s Translational Invariance (and CNNs) an appropriate assumption
(or inductive bias) for language tasks?
* |tis still trickly better than BoW!

An absolutely great moviel T watched the premiere with my friends.

The movie about cats was absolutely great, and the cats were cute.

The movie is about cats running around, and it is absolutely great.

If a clueis very informative,
maybe we don’t care much
where in a text it appears?

A reasonable assumption for many
(but not all) text classification
tasks

CNN architectures (including for text) consist of blocks
- convolutions: detect matches of patterns
- pooling: aggregate these matches across the positions

Standard part
(same for all NNs):
get probability
distribution

Specific to CNNs:
process text
(document)

- m-sized vector K classes
P(class=k]..)

n:vector o
. i O | softmax
representation — g—> Linear (=) —| ,':' |
of the text o layer_Jo J —

_ T , _ Aggregate matches
[pooling] pooling <=1 "5 er positions
<—non-linearity ~ (@ka "'wedon’tcare
(Rel.U) where the catis”)

[oooo]ea__)

(cese)>(J—-
(ceeo)l>[—~
(eeco)>(U—>
(0000]—>n-—>

(eooo)={
|oooo|—>n—>
(cooo])—>{|]

Find matches

<—— convolution <— with patterns

9 [o g ol o] [o [o] [o] [0 [o o :
o o lol lo lof |o lo |[o
ol lo| |9 o |o o [o |o| |o| [0 <—— word (aka “find a cat”)
ol lol o o lo o lof |o lo |o .
— . N — embeddings
<pad> I like the cat on a mat<eos><pad>

Scan over text and record where you detected matches

O

<pad> I like the cat on a mat <eos> <pad>

: o)
Result.. °
ol [ol [o] (o] [o vector of sizem 8
(@) (@) (@) (@) @) .
ol lo| le| lo] |o Convolution
of 1°] 1° ° |© with m filters _
- — o [o [o
i . O O @)
cBemcmrRr e Embeddm‘gs. =
ol 1al ol lal 1ol o] |6 vectors of size d o 19 |o
O @) O O O (@) O .
o 9 o lo] [of |of [o I like The'

<pcxd>I I like 1‘hel c;n‘ <eo0s> <pad>

Kernel size k (k=3)
(convolution window size)

Convolutionis alinear layer
mapping from k-d to m

I like the
[eYeXeYe) [eXeXoXe] [eXeXeXe] X W

& =~
< >

kvectorsofsized: L J v
m filters

7¢
o
|l
2000
3

Convolutionis alinear layer
mapping from k-dtom

N

like the
I(Iaoeoolooool X W kd —

kvectorsofsized: L J v
k-d «—>

m filters

[©

=
(0J6)

(0000]
3

e (z1,...,Z,) - representations of the input words, z; € RY;
o d (input channels) - size of an input embedding;
o k (kernel size) - the length of a convolution window (on the illustration, k = 3);

» m (output channels) - number of convolution filters (i.e., number of channels produced by
the convolution).

kd A representation of the window (a long
U; = [:Bi, .o wi—l—k—l] e R vectors)

Multiplied by the convolution matrix to
Fi =Uu; X wW.)
produce a feature vector for the window

Individual filters are feature extractors

Filter: O 0 O O

N

<pad> I like the cat <eos> <pad>

(video, not visible in pdf)

000
- 080
000

0
0
|
0

0000

Filter: m C]/I\C]

<pad> I like the cat <eos> <pad>

Embeddings: ___ |o
vectors of sized 8

[cooo]
[cooo]
[cooo]
[cooo0]
[6000]
[6000]

concatenate
ole]o (@]
01010 (9)
O|l10]10 (0)
olo]o) I
i olo|o O
I like the 5 8 - : 0
[C00O0J0000[0000] X |e|ele|:|e] = a
H @] (9] (@] Q
current window ololo o :
size=3.d olelo)
ololo o) -D_
Sisjs) &= result:
m filters: m features

m x(3-d) parameters

Pooling

_ — = — — — — MmaX —
Fiter: 1 O] 1@ (O @ O (O — (O
Fiter:2 O 1O O 1O O 12X,
Fiter: 3 || | || O |O) (O] X, 13
e |0 0 0 |0 @ 0T @
0.1(1:2]0.4]0.9]0.3]0.2] _Max, 12
Max pooling: 0.3/0.2/0.4/[1.4/[1.3/0.1] M3, |14
maximum foreach |, o\, 4l 3ll 4l 1|lo.5| 2%, 113
dimension (feature) . <] :
05/ 0.1/ 0103111 lo2) 2% 1.1

Mean pooling uses averages instead averages

pooling = 2 with stride=2 pooling = 3 with stride=3

| O O O O O
Pooling —>
OO0 000 O OO0 000 O
Convolution —>
O0000 00 O O0000 00 O

<pad> T like the cat . <eos><pad> <pad> I like the cat . <eos><pad>

Parameters:
- pooling: pool ‘size’
- stride: shift to the next pool operations

Stride should not be bigger than pooling (often equal)

General Pooling

Pooling

1.2 0.9

0.4 14

1.3 0.5

- 05 11

ooling .@
. —> MaXx
(pooling 3, Y

stride 3) 0.1]1.2(10.4]|0.9/|0.3]|0.

0.5 0.10.110.31.1710.2

00000000

<pad> I like the cat . <eos> <pad>

Convolution —>

Global Pooling

Global Pooling —
. o

(max-over-time < >

pooling) 0.1|[1.2]/0.4//0.9|/0.

0.510.10.110.31.110.2

—_)

Convolution —>

00000000
<pad> I like the cat . <eos> <pad>

Gives us a single vector per example as needed for classification

_ m-sized vector K classes

Standard part P(class=k] ..)
same for all NNs): n: vector o ' \
| getprobability) representation — |2 Linear|© |softmax ——
distribution of the text o layer 1o | =

t

max-over-time pooling

<« Herewecompress
all vectors into one!

<— non-linearity (ReLU)
Specific to CNNs: AR RE QR G
process text ol lo] lof |o] [eo]| o] |eo] |o
(document) of 1o 1t el 1ot 1ol 1e] 1o
-~ -~ -~ <—— convolution
ol [o] [[o] [o] [o] [o] [0 [o] [o
O O O O O O O @) O O .
|§ o) |§ |E |§ 0 E| 0O <—— word embeddings
(@) O 2 O O O 9 O 9 O
<pad> I like the cat on a mat<eos><pad>

- This is our h: vector
representation of the text

\

[eec oo 000]

concatenate
representations from
different convolutions

A

(000}
lo oo}

max-over-time E
i Max
pooling

3
Q
P

(000]
o 00]

[o00O]
(co9]
X3
00] |3
mé‘é
(e 0]

Convolution —

O
O
©
O

<p0d> I like the cat<eos> <pad> <pad> I like the cat<eos> <pad> <pc1d>l I like the Ca1’1<eos> <pqd>

(o0 o0]
000
©0O0
\\!oool
{o00]

L//[ooo]

0000]

[000O0]

[oYeYoXel o g
L~

|OOOO
[coo0]
[coo o]
[eYeYeYel
[cocoo
0000
[ccoo
[Gcoo
0000
0000
[ccoo

oo oo

0000
(000 0]

[cO0OO0

| S

kernel size=2 kernel size=3 kernel size=4

Global Pooling ___ 1 The finalis always global pooling:
(max-over-time) 0 0 0 0O | youneedittogetasingle vector

Convolution —>

O 0 0 0 QO |

Pooling — Block convolution+pooling
O0CO0O00 0000 O You can stack several of them!
Convolution —>

000000000000

<pad> I like the cat on the red mat . <eos> <pad>

When crucial to have multiple layers?

* Long documents

* Models which start with character embeddings rather than words

* In principle, complex tasks, requiring modeling interaction
between patterns

It is informative / interesting to understand what individual CNN
filters capture, in different layers

CNN filters in image processing models:

Lower layers

Can we get something like this for NLP models?

from https://distill.pub/2019/activation-atlas/

https://distill.pub/2019/activation-atlas/

Interpretability: what are CNNs learning?

2. When does this
filter activates most?

/4 \ . 4. Trace back to
‘3 Herel —> the n-gram

1. Pick afilter —s Filter:1 [O O O
Filter: 2 |(J] | O |
Filteer: 3| | juge
Filter:m | () Qv\.) I., . @

Convolution N
i i ! ! I | O O

<pad> I like the cat . <eos><pad>

V

5. This n-gram is a pattern a filter “captures”

filter Top n-gram Score

1 poorly designed junk 731 Top n-grams for filter4 Score
2 simply would not
|?Y >/ 1 still working perfect 6.42
3 aminor drawback 6.1 2 works - perfect 5.78
: : 3 isolation proves invaluable 5.61
4 still working perfect P
gp S 4 still near perfect 5.6
5 absolutely gorgeous . 536 5 still working great 5.45
: : 6 ks as good 5.44
6 one little hitch wor g9
272 7 still holding strong 537
7 utterly useless . 6.33
8 deserves four stars 5 56 A filter activates for a family of
N-grams with similar meanin
9 a mediocre product 6.91 . 7

You can draw parallels with logistic regressions, relying on ngrams
What are the key differences?

Text classification with neural networks

* Generalization of logistic regression
* Easy to integrate embeddings, estimated on unlabeled text
* BoW models, weighted BoW models, CNNs

Not exactly true for multilayered CNNs }

All these models model only limited interaction between nonadjacent
expressions, how do we handle these?

Next time - Recurrent Neural Networks (RNNs)
Next week - Transformer models

