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Last time:
* Defined RNNs
* Used them for classification and language modeling
* Tried to understand what they capture

Today, we will

* see how to generate text from a neural language model
(we will use RNINs but applicable to any other NN model)

* consider sequence-to-sequence tasks (e.g., machine translation)
* introduce a basic form of encoder-decoder models for seq2seq

* discuss how to evaluate text generation systems



Neural language models has to:
|. Produce a representation of the prefix
2. Generate a probability distribution over the next token
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Predicting a word, given a prefix, it is just a classification problem!



Recap: High-level intuition for a language model
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Recap: Training the language model
Training is done in a very much the same way as we train a classifier!

Loss = —log(p(yt|ly<t))

we want the model
to predict this

l

Training example: I saw a cat on a mat <cos>

Model prediction: p(*|I saw a) Target Loss =-log (p(cat)) » min
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To generate text using a language model, you could just sample tokens from
the probability distribution predicted by a model
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To generate text using a language model. you could just sample tokens from
the probability distribution predicted by a model



An alternative to sampling from the distribution is selecting the most
probable word at every step (called greedy decoding)
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An alternative to sampling from the distribution is selecting the most
probable word at every step (called greedy decoding)

so even if the us , and the united states , the

hotel is located in the list of songs , you can

add them in our collection by this form . eos

alas , the hotel is located in the list of songs ,

you can add them in our collection by this form
eos

Anything you notice about these samples!?
They contain only frequent words and are boring!

Greedy decoding is not generally a good way of

PI’Od ucing text from a LM (but is a viable strategy when the output is
more constrained, as in machine translation but we will talk later about it)



We want the generated text to be coherent (or fluent) but also diverse (or

interesting)

The standard way of controlling the generation characteristics is the

softmax temperature parameter
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Trade-off: coherence vs diversity

_ diversity S
coherence
+ > -
o 0 =
0 T temperature

(standard sampling)

The choice of temperature parameters is dependent on your goal
/ situation

There are smarter ways to sample from LMs (e.g., top-k sampling,
/ nucleus sampling)



We now know how to

* build a neural network for language modeling
* train it on a corpus
* generate text from a neural language model

.. but how do we use these ideas if we want to solve a task?
* generate a translation of an English sentence into Chinese

* produce a summary of a document
* generate an answer to a question



X — input sentence,
y - its translation
Machine Translation

model parameters

~N o
y' = argmaxp(y|x, 0)
y

Questions we need to answer

 modeling  learning * search

How does the model How to find 6? How to find
for p(y|x, 8) look like? the argmax?



encoder - reads source sequence and produces its representation;
decoder - uses source representation from the encoder to generate
the target sequence.

Encoder builds a Target sentence
representation of the source I saw a cat on a mat <eos>
and gives it to the decoder T

N

Encoder — Decoder

T Decoder uses this source
L q BUAECT KOTFO Ha MATe <eos> representation to generate
I" “saw the target sentence

Source sentence

"n w " w

cat” "on" "mat”



Language Models:  pP(y, y,,...,y,) = ﬂp(ytIY<t)

t=1

Conditional

Language Models: p(ylyz,_ ,yn,|x) Hp(yt|y<t,x)
t=1

condition on source x



Encoder-decoder in action
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A lot like in language modeling, which was a lot like in text classification!



Vector representation
of the source — use it
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. ©John admires Mary

Last encoder states: near-paraphrases seem close in the space!

C Mary admires John

O Mary is in love with John

© Mary respects John

O John is in love with Mary

O John respects Mary
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OTI was given a card by her in the garden

o In the garden, she gave me a card
© She gave me a card in the garden

© She was given a card by me in the garden
©1In the garden, I gave her a card

© T gave her a card in the garden
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Sutskever et al. (2014)



Training

Source seguence: Target sequence: <—— onetraining example
4 BuAaen KOTHO Ha mare <eos> I saw a cat on a mat <eos> <—— one step for this example
"T" “saw” “cat” “on" “maT" ‘/—' \

previous tokens we want the model
to predict this
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Loss = — log(p(yt|y<t,w))



Training

Encoder: read source

0000

we are here

Source: 4 suaen KOTHO Ha MaTe <eos>
“Ill llsaw" “COT" “on” ‘lma*“

(video, not visible in pdf)

Target: I saw a cat on a mat <eos>



n
y' = argmaxp(y|x) = arg maxl—[p(ytly<t,x) How to find the argmax?
y y
t=1

The simplest idea — greedy decoding, at each step, pick the most likely
token, but note:

n

n
arg myaxn PYVely<e,x) # 1_[ arg myetmp(ytly«,x)
t=1

t=1

Can we do better?



Maintaining top hypotheses as you go

<bos>

Start with the begin of sentence token or with an empty sequence

(video, not visible in pdf)



Beam search

Maintaining top hypotheses as you go
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All hypotheses are complete - generation ended




Actually, we can also sample in machine translation too (as with language
modelling)

The risk is that a sample translation can deviate from the source sentence
in meaning (i.e. hallucinate)



Evaluating text generation models



Consider French to English machine translation
Source sentence: Le chat est assis sur le tapis

Human translation into English: The cat is on the carpet



Consider French to English machine translation

Source sentence: Le chat est assis sur le tapis

Human translation into English: The cat is on the carpet
How can we design a metric which would score MT| > MT2?
MTI: The catis seated on the mat

MT2: The chat is assassinated on the tape

(We are looking into automatic extrinsic evaluation, recall Bracket
Fl for parsing)



Typically, we need more than | human (aka
translation per sentence to have reliable evaluation.

Let’s focus on unigrams (individual tokens) for now

MT: The the the the the the the a
Reference |: The cat is on the mat

Reference 2: There is a cat on the mat

(ignore capitalization for evaluation, i.e. treat “The’ and ‘the’ as the same word)

reference)



MT: The the the the the the the a ‘the’ appears 7 times

Reference |: The cat is on the mat ‘the’ appears 2 times
Reference 2: There is a cat on the mat ‘the’ appears 1 time

Modified unigram precision: 2 / 7



MT: The the the the the the the a ‘a’ appears 1 time
Reference |: The cat is on the mat ‘a’ appears O times
Reference 2: There is a cat on the mat ‘A’ appears 1time
Modified unigram precision: 2+ 1) / (7+1)= 3/8

Aggregate over all unigrams in the MT (‘candidate’)



Actual BLEU is considerably more complicated, as needs to

- aggregate over the entire test set

- aggregate over ngrams of different order (unigrams, bigrams, ...)

- penalize short translation (remember from parsing: precision favors models
producing short outputs)

There are other ngram overlap metrics which can be more suitable
for other text generation problems (e.g., ROUGE for summarization)



- do not account for lexical paraphrases (e.g., substituting words
with their synonyms)

- even more problematic for long text generation (e.g,
document machine translation)

- unreliable for tasks with less restricted outputs (e.g., generate
“a scary novel about Edinburgh™)

- do not sufficiently penalize hallucinations

What can we do if they are so unreliable?

- Human evaluation (expensive, hard to relate to results of older experiments)
- Neural model-based metrics (e.g., BERT Score, GPTScore)
- Specialized metrics (e.g., FActScore for hallucinations)



Vector representation
of the source — use it
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We considered tokenization of sentences into ‘words’
(whatever we mean by a ‘word’)



Tokenization

/ \
Word-level Subword-level

e Openvocabulary

* rareand unknown tokens
are encoded as seguences
of subword units

Instead of ‘unrelated’, we get two tokens ‘un@@’ ‘related’

Subword segmentations reduces sparsity and results in a speeds-up (recall:
softmax involves summation over all token types, few token typs -> faster
computation)

Crucial for morphologically-rich languages

Standard segmentation algorithms rely on character ngram frequency (not on
morphology (e.g., Byte-Pair Encoding)

Used in virtually any modern neural model



Encoder-Decoder architecture for Seq2Seq

Inference algorithms (greedy, beam-search, sampling,
temperature,...)

Evaluating text generation (e.g., BLEU)

Subword tokenization



