
Text Generation and Encoder-Decoder Models

Plan for today

Last time:
• Defined RNNs
• Used them for classification and language modeling
• Tried to understand what they capture

Today, we will

• see how to generate text from a neural language model
 (we will use RNNs but applicable to any other NN model)

• consider sequence-to-sequence tasks (e.g., machine translation)

• introduce a basic form of encoder-decoder models for seq2seq

• discuss how to evaluate text generation systems

Recap: Neural Language Modeling
Neural language models has to:
1. Produce a representation of the prefix
2. Generate a probability distribution over the next token

Predicting a word, given a prefix, it is just a classification problem!

Recap: High-level intuition for a language model

Recap: Multi-layer RNN language model

Recap: Training the language model

Training is done in a very much the same way as we train a classifier!

Generating text

To generate text using a language model, you could just sample tokens from
the probability distribution predicted by a model

Generating text

To generate text using a language model. you could just sample tokens from
the probability distribution predicted by a model

Generating text: greedy decoding
An alternative to sampling from the distribution is selecting the most
probable word at every step (called greedy decoding)

Anything you notice about these samples?

Generating text: greedy decoding
An alternative to sampling from the distribution is selecting the most
probable word at every step (called greedy decoding)

Anything you notice about these samples?

They contain only frequent words and are boring!

Generating text: greedy decoding
An alternative to sampling from the distribution is selecting the most
probable word at every step (called greedy decoding)

Anything you notice about these samples?

They contain only frequent words and are boring!

Greedy decoding is not generally a good way of
producing text from a LM (but is a viable strategy when the output is
more constrained, as in machine translation but we will talk later about it)

Controling diversity

We want the generated text to be coherent (or fluent) but also diverse (or
interesting)

The standard way of controlling the generation characteristics is the
softmax temperature parameter

Temperature

Temperature – more formally

Temperature – more formally

The most probably
choice does not
change, but with high
temperatures, all the
probabilities become
closer to each other

The samples will
become more diverse

Temperature – more formally

The most probably
choice does not
change, but with low
temperatures, all the
probabilities become
further away from
each other

The samples will
become more similar

Trade-off: coherence vs diversity

The choice of temperature parameters is dependent on your goal
/ situation

There are smarter ways to sample from LMs (e.g., top-k sampling,
/ nucleus sampling)

Summary so far

We now know how to

• build a neural network for language modeling
• train it on a corpus
• generate text from a neural language model

.. but how do we use these ideas if we want to solve a task?

• generate a translation of an English sentence into Chinese
• produce a summary of a document
• generate an answer to a question

Sequence-to-Sequence modeling

x – input sentence,
y - its translation

Encoder-decoder framework

• encoder - reads source sequence and produces its representation;
• decoder - uses source representation from the encoder to generate

the target sequence.

Language modeling perspective

Encoder-decoder in action

(video, not visible in pdf)

Encoder-decoder: under the hood

A lot like in language modeling, which was a lot like in text classification!

Simplest RNN-based Model:

Simplest RNN-based Model:

Sutskever et al. (2014)

Last encoder states: near-paraphrases seem close in the space!

Training

Training

(video, not visible in pdf)

Inference (aka decoding)

The simplest idea – greedy decoding, at each step, pick the most likely
token, but note:

Can we do better?

Beam search

Maintaining top hypotheses as you go

(video, not visible in pdf)

Beam search

Maintaining top hypotheses as you go

Why not sampling?

Actually, we can also sample in machine translation too (as with language
modelling)

The risk is that a sample translation can deviate from the source sentence
in meaning (i.e. hallucinate)

Evaluating text generation models

How to evaluate text generation?

Consider French to English machine translation

Source sentence: Le chat est assis sur le tapis

Human translation into English: The cat is on the carpet

How to evaluate text generation?

Consider French to English machine translation

Source sentence: Le chat est assis sur le tapis

Human translation into English: The cat is on the carpet

How can we design a metric which would score MT1 > MT2?

MT1: The cat is seated on the mat

MT2: The chat is assassinated on the tape

(We are looking into automatic extrinsic evaluation, recall Bracket
F1 for parsing)

Idea: count overlapping ngrams - BLEU

Typically, we need more than 1 human (aka reference)
translation per sentence to have reliable evaluation.

Let’s focus on unigrams (individual tokens) for now

MT: The the the the the the the a

Reference 1: The cat is on the mat

Reference 2: There is a cat on the mat

(ignore capitalization for evaluation, i.e. treat ‘The’ and ‘the’ as the same word)

Idea: count overlapping ngrams - BLEU

MT: The the the the the the the a

Reference 1: The cat is on the mat

Reference 2: There is a cat on the mat

Modified unigram precision: 2 / 7

‘the’ appears 7 times

‘the’ appears 2 times

‘the’ appears 1 time

Idea: count overlapping ngrams - BLEU

MT: The the the the the the the a

Reference 1: The cat is on the mat

Reference 2: There is a cat on the mat

Modified unigram precision: (2 + 1) / (7 + 1) = 3 / 8

Aggregate over all unigrams in the MT (‘candidate’)

‘a’ appears 1 time

‘a’ appears 0 times

‘a’ appears 1 time

BLEU metric

Actual BLEU is considerably more complicated, as needs to
- aggregate over the entire test set
- aggregate over ngrams of different order (unigrams, bigrams, …)
- penalize short translation (remember from parsing: precision favors models

producing short outputs)
- …

There are other ngram overlap metrics which can be more suitable
for other text generation problems (e.g., ROUGE for summarization)

Ngram overlap metrics - weaknesses

- do not account for lexical paraphrases (e.g., substituting words
with their synonyms)

- even more problematic for long text generation (e.g.,
document machine translation)

- unreliable for tasks with less restricted outputs (e.g., generate
“a scary novel about Edinburgh”)

- do not sufficiently penalize hallucinations
..

What can we do if they are so unreliable?
- Human evaluation (expensive, hard to relate to results of older experiments)

- Neural model-based metrics (e.g., BERT Score, GPTScore)
- Specialized metrics (e.g., FActScore for hallucinations)

Tokenization

We considered tokenization of sentences into ‘words’
(whatever we mean by a ‘word’)

Tokenization

Instead of ‘unrelated’, we get two tokens ‘un@@’ ‘related’
Subword segmentations reduces sparsity and results in a speeds-up (recall:
softmax involves summation over all token types, few token typs -> faster
computation)

Crucial for morphologically-rich languages

Standard segmentation algorithms rely on character ngram frequency (not on
morphology (e.g., Byte-Pair Encoding)

Used in virtually any modern neural model

Summary

• Encoder-Decoder architecture for Seq2Seq
• Inference algorithms (greedy, beam-search, sampling,

temperature,…)
• Evaluating text generation (e.g., BLEU)
• Subword tokenization

