Foundations for Natural Language Processing

Text Generation and Encoder-Decoder Models

lvan Titov
(with graphics/materials from Elena Voita)

® School of

informatics

Last time:
* Defined RNNs
* Used them for classification and language modeling
* Tried to understand what they capture

Today, we will

* see how to generate text from a neural language model
(we will use RNINs but applicable to any other NN model)

* consider sequence-to-sequence tasks (e.g., machine translation)
* introduce a basic form of encoder-decoder models for seq2seq

* discuss how to evaluate text generation systems

Neural language models has to:
|. Produce a representation of the prefix
2. Generate a probability distribution over the next token

P(*) .

] |

Neural network

—

Predicting a word, given a prefix, it is just a classification problem!

Recap: High-level intuition for a language model

Output word
embecildings
8600 8‘ — P(x|I saw a cat on a) B
Take dot-product of h with N At S — get pI’Ob.abIth
output word embeddings [T1288 AT > distribution for
O |
o1 — the next token
0 00 0]—QOJ C
o N:vector representation of N
0 :
Neural network 8 contextI saw a cat ona
process context
o o [o [d [d [o (previous history)
o| <— Input word embeddings
o o [o] lo [of [o
I saw a cat on a

exp(h; ey,)
> exp(hiew)

weV

P(yt|y<t) =

cat on

SGW

H

2)
4
5 ...

«—{co0o00] {0000 |J«—{0000]
@hqé

T‘Bw_ (0000 J<i0c000]
~N 0N
—c
000O0 (0000 }<—0000]
Sy
«<—{co0o00] {0000 |J«{O0OT]

2
/\h

|

2nd layer
RNN

a cat

saw

I

Recap: Training the language model
Training is done in a very much the same way as we train a classifier!

Loss = —log(p(yt|ly<t))

we want the model
to predict this

l

Training example: I saw a cat on a mat <cos>

Model prediction: p(*|I saw a) Target Loss =-log (p(cat)) » min

0]
0 [1 |decrease
: = -
PN —_— _Increase
cat @ —
0
0
0
0

decrease

To generate text using a language model, you could just sample tokens from
the probability distribution predicted by a model

Output word
embeddings ~ P(x|I saw a cat ona)
0000 8 j:l
- 0000
Takg dot-product of o e -
nwith output word 0000]+0 —
- 000 0] ~OF—— [
embeddings 5000l—0 D:]
000 0]—~0O
000 0]—~0O —
0 0 0 0]—Q O
(@)
Neural o N:vector representation of
network | |o contextI saw a cat on a

0000

0000
0000

<— Input word embeddings
. a

I saw .

To generate text using a language model. you could just sample tokens from
the probability distribution predicted by a model

An alternative to sampling from the distribution is selecting the most
probable word at every step (called greedy decoding)

so even if the us , and the united states

, the
hotel is located in the list of songs

, you can
add them in our collection by this form . eos

alas , the hotel is located in the list of songs

4
you can add them in our collection by this form

eo0s

Anything you notice about these samples!?

An alternative to sampling from the distribution is selecting the most
probable word at every step (called greedy decoding)

so even if the us , and the united states , the

hotel is located in the list of songs , you can

add them in our collection by this form .

eos

alas , the hotel is located in the list of songs

4
you can add them in our collection by this form

eo0s

Anything you notice about these samples!?

They contain only frequent words and are boring!

An alternative to sampling from the distribution is selecting the most
probable word at every step (called greedy decoding)

so even if the us , and the united states , the

hotel is located in the list of songs , you can

add them in our collection by this form . eos

alas , the hotel is located in the list of songs ,

you can add them in our collection by this form
eos

Anything you notice about these samples!?
They contain only frequent words and are boring!

Greedy decoding is not generally a good way of

PI’Od ucing text from a LM (but is a viable strategy when the output is
more constrained, as in machine translation but we will talk later about it)

We want the generated text to be coherent (or fluent) but also diverse (or

interesting)

The standard way of controlling the generation characteristics is the

softmax temperature parameter

Playg rou nd Chat Your presets ‘ Save

SYSTEM - o RO
USER Enter a user message here.

You are a helpful Controls randomness: Lowering results in

® Addmes less random completions. As the
temperature approaches zero, the model
will become deterministic and repetitive.

assistant.

View code Share

Model

gpt-3.5-turbo

Temperature

Maximum length

256

Before
Output word
embeddings P(*|I saw a cat on a)
000 0]+]
Take dot-product of ~ {2000 8 f —
A with output word [0 o0]—~0|Softmax "7
- 0000 -Or—— O
embeddings 5060 0l—0 El:l
O
55000 —
0000]—+Q O
Neural . _ h:vector representation of
network | |2 context I saw a cat ona

<— |nput word embeddings

0000
[00 0 0]
[00 0 O]

I saw .. a

After

Outputword Divide by T

Take dot-product of
h with output word
embeddings

embeddings l P(+|I saw a cat on a)

00 00)—~0 7] 1

0000 § [

8g88 softmax
00 0 0]—0O O —— O

00 0 0]—~0O @) 1

000 0]—~0 8 []

000 0]—~0O 1
0000]J—~0O o 1

Neural
network

H [600o0]
[000O)]
0000

saw ..

o

N:vector representation of
contextI saw a cat ona

0000

<— |Input word embeddings

hTw
exp(hTw) . €XP\
hTw; ’ hTw,
ZwieV exp(h'w;) ey exp(l)

T - softmax temperature

0.154

0.11

0.05 4

0_'.

Temperature: 1

exp(hTw)
hTw; ’ hTw;
ZwiEV exp(h*wy) ey exp(- l)

T - softmax temperature

The most probably 0.12
choice does not 0.1
change, but with high

temperatures, all the 0.08

probabilities become 0.06
closer to each other '

0.04

The samples wil! 0.02
become more diverse

0

Temperature: 4

exp(hTw)
hTw; ’ hTw;
ZwiEV exp(h*wy) ey exp(l)

T - softmax temperature

The most probably .
choice does not 0.3 3
change, but with low 0.25 —f
temperatures, all the 0.2 f
probabilities become -
further away from 0.153
each other 0.1 3
The samples will 0.05 E|
become more similar E —

Temperature: 0.30

O

Trade-off: coherence vs diversity

_ diversity S
coherence
+ > -
o 0 =
0 T temperature

(standard sampling)

The choice of temperature parameters is dependent on your goal
/ situation

There are smarter ways to sample from LMs (e.g., top-k sampling,
/ nucleus sampling)

We now know how to

* build a neural network for language modeling
* train it on a corpus
* generate text from a neural language model

.. but how do we use these ideas if we want to solve a task?
* generate a translation of an English sentence into Chinese

* produce a summary of a document
* generate an answer to a question

X — input sentence,
y - its translation
Machine Translation

model parameters

~N o
y' = argmaxp(y|x, 0)
y

Questions we need to answer

 modeling learning * search

How does the model How to find 6? How to find
for p(y|x, 8) look like? the argmax?

encoder - reads source sequence and produces its representation;
decoder - uses source representation from the encoder to generate
the target sequence.

Encoder builds a Target sentence
representation of the source I saw a cat on a mat <eos>
and gives it to the decoder T

N

Encoder — Decoder

T Decoder uses this source
L q BUAECT KOTFO Ha MATe <eos> representation to generate
I" “saw the target sentence

Source sentence

"n w " w

cat” "on" "mat”

Language Models: pP(y, y,,...,y,) = ﬂp(ytIY<t)

t=1

Conditional

Language Models: p(ylyz,_ ,yn,|x) Hp(yt|y<t,x)
t=1

condition on source x

Encoder-decoder in action

P(* |9 suaen KoTHO Ha marte <eos>)

—

— :
— get probablllty
A distribution for
_,:] the next token
]
]
: —

Encoder — Decoder

process source and

ol [0 [o] [o] [o] [o o previous history
ol o] lol lo] lo| |o o
ol o] o lo| lo| |o o
ol o] lo| lo] lo| |o o

" 9" ?Mne"nl\KOT?\ Ha" TaTe"(eos> <bos>

I" "saw” "cat” "on" "mat -
L) 1)
source previous history

(video, not visible in pdf)

Encoder

(@) !l‘! l\ i

000
000
Q00
000
Q00

[0000]

9 BMAEN KOTHO Ha mare <eos>

"n w " w " w

‘I‘I“ "saw" “cat” "on" "mat"”

source

Transform h linearly
from sized to |V| - the
vocabulary size

|VItokens P(x|I saw a cat,
9 BuAen KOTHO Ha MATe <eo0s>)

Decoder

d-5|ied o |:||:|
vector
Linear %SOftmaX —
O— O
layer |-O 1]
@) []
O I
Q. []
o .
o| _ h:vectorrepresentation
8 of context (source and

0000

0000
0000
0000

previous history)

o
<— Word embeddings
0

<bos> I saw a cat

previous history

_—

—_—
—_—

get probability
distribution for
the next token

process source and
previous history

A lot like in language modeling, which was a lot like in text classification!

Vector representation
of the source — use it

asinitialdecoderstate_l I saw a cat on a mat<eos> <— largetsentence
Initial RNN [e] [e] [e] [e] [o] [o] [e ol [e] [e] [e] [o] [o] [e] [o
ol ol ol ol lo] o] Jo ol |of .|o] lof o] Jel Jof |o
state (e.a., [oPPloPPloPloroPloPlol— oo Pla ol la e o lo
zerovector) |o]| |o] |o] le| [e] |o| |e ol lof| [of [o| o] o] |o] o
ol [0 lo [o] [o] lo ol o] [o] [0 [0 [o] |o |o
Input word - ol [0 [of [of o] |o o 1o |ol |of [0 [o] 9] |o < Output word
‘ ol o lo |o] o lo o o] lo|l |of |[o |ol |9 |o :
embeddings ol o] 19 lo] [o |o o [of lo| |o| [o [of lof [o embeddings

Source sentence —> 4 BUuAen KOTHo Ha Marte <eos>
“I” “SGW” “CGT” \\onu “mGT”

Encoder RNN Decoder RNN

<bos> I saw a cat on a mat

. ©John admires Mary

Last encoder states: near-paraphrases seem close in the space!

C Mary admires John

O Mary is in love with John

© Mary respects John

O John is in love with Mary

O John respects Mary

-6 -4 -2 0 2 4 6 8 10

151

10}

-5}

OTI was given a card by her in the garden

o In the garden, she gave me a card
© She gave me a card in the garden

© She was given a card by me in the garden
©1In the garden, I gave her a card

© T gave her a card in the garden

-20
-15

-10 -5 0 5 10 15 20

Sutskever et al. (2014)

Training

Source seguence: Target sequence: <—— onetraining example
4 BuAaen KOTHO Ha mare <eos> I saw a cat on a mat <eos> <—— one step for this example
"T" “saw” “cat” “on" “maT" ‘/—' \

previous tokens we want the model
to predict this

Model prediction: p(«|I saw g, Target Loss = -log (p(cat)) » min
4 .. <eos>) -
O 0 -
] 0 1 |decrease
— 0 —1
- <«— cat —> @ 1] _Increase
— I
— 0 —
O 0 I:II:I decrease
O
| . — -

Loss = — log(p(yt|y<t,w))

Training

Encoder: read source

0000

we are here

Source: 4 suaen KOTHO Ha MaTe <eos>
“Ill llsaw" “COT" “on” ‘lma*“

(video, not visible in pdf)

Target: I saw a cat on a mat <eos>

n
y' = argmaxp(y|x) = arg maxl—[p(ytly<t,x) How to find the argmax?
y y
t=1

The simplest idea — greedy decoding, at each step, pick the most likely
token, but note:

n

n
arg myaxn PYVely<e,x) # 1_[arg myetmp(ytly«,x)
t=1

t=1

Can we do better?

Maintaining top hypotheses as you go

<bos>

Start with the begin of sentence token or with an empty sequence

(video, not visible in pdf)

Beam search

Maintaining top hypotheses as you go

<bos>

s
Sy

The

S [kitten

cat

—_—

<eos>

<eos>

All hypotheses are complete - generation ended

Actually, we can also sample in machine translation too (as with language
modelling)

The risk is that a sample translation can deviate from the source sentence
in meaning (i.e. hallucinate)

Evaluating text generation models

Consider French to English machine translation
Source sentence: Le chat est assis sur le tapis

Human translation into English: The cat is on the carpet

Consider French to English machine translation

Source sentence: Le chat est assis sur le tapis

Human translation into English: The cat is on the carpet
How can we design a metric which would score MT| > MT2?
MTI: The catis seated on the mat

MT2: The chat is assassinated on the tape

(We are looking into automatic extrinsic evaluation, recall Bracket
Fl for parsing)

Typically, we need more than | human (aka
translation per sentence to have reliable evaluation.

Let’s focus on unigrams (individual tokens) for now

MT: The the the the the the the a
Reference |: The cat is on the mat

Reference 2: There is a cat on the mat

(ignore capitalization for evaluation, i.e. treat “The’ and ‘the’ as the same word)

reference)

MT: The the the the the the the a ‘the’ appears 7 times

Reference |: The cat is on the mat ‘the’ appears 2 times
Reference 2: There is a cat on the mat ‘the’ appears 1 time

Modified unigram precision: 2 / 7

MT: The the the the the the the a ‘a’ appears 1 time
Reference |: The cat is on the mat ‘a’ appears O times
Reference 2: There is a cat on the mat ‘A’ appears 1time
Modified unigram precision: 2+ 1) / (7+1)= 3/8

Aggregate over all unigrams in the MT (‘candidate’)

Actual BLEU is considerably more complicated, as needs to

- aggregate over the entire test set

- aggregate over ngrams of different order (unigrams, bigrams, ...)

- penalize short translation (remember from parsing: precision favors models
producing short outputs)

There are other ngram overlap metrics which can be more suitable
for other text generation problems (e.g., ROUGE for summarization)

- do not account for lexical paraphrases (e.g., substituting words
with their synonyms)

- even more problematic for long text generation (e.g,
document machine translation)

- unreliable for tasks with less restricted outputs (e.g., generate
“a scary novel about Edinburgh™)

- do not sufficiently penalize hallucinations

What can we do if they are so unreliable?

- Human evaluation (expensive, hard to relate to results of older experiments)
- Neural model-based metrics (e.g., BERT Score, GPTScore)
- Specialized metrics (e.g., FActScore for hallucinations)

Vector representation
of the source — use it

as'n'tialdecoderstate_l I saw a cat on a mat<eos>»]
Initial RNN o] o] o] ol o] o] Jeo ol [o] [o] [o] (o] (o] [o] [o
ol o] ol Jol o] Jol o ol o] o] lo| |o] |o] |o] |o
state(e.a., [or?loPloP oo loPlol—> oo ool o lol o lo
zerovector) [of (o] o] o] o] |of |o ol o] o] |o| |e] |e] |o] |©
B ol [[o [o] [o] [o o [o] [o] [0 [o [o] [of lo
Ie ol o o lo o] |o o o] |o] |lo |of o |of lo
ol o o [o o] o o o] |o| lo |of o [of lo

ne o 19 [o] |o [o of [of [o |9 [9 [o] |9 |9 .

4 Buaen KOTHO Ha Marte <eos>
\\Ill “SQW" “CGTH \\onll “maT”

Encoder RNN Decoder RNN

<bos> I saw a cat on a mat

We considered tokenization of sentences into ‘words’
(whatever we mean by a ‘word’)

Tokenization

/ \
Word-level Subword-level

e Openvocabulary

* rareand unknown tokens
are encoded as seguences
of subword units

Instead of ‘unrelated’, we get two tokens ‘un@@’ ‘related’

Subword segmentations reduces sparsity and results in a speeds-up (recall:
softmax involves summation over all token types, few token typs -> faster
computation)

Crucial for morphologically-rich languages

Standard segmentation algorithms rely on character ngram frequency (not on
morphology (e.g., Byte-Pair Encoding)

Used in virtually any modern neural model

Encoder-Decoder architecture for Seq2Seq

Inference algorithms (greedy, beam-search, sampling,
temperature,...)

Evaluating text generation (e.g., BLEU)

Subword tokenization

