## Foundations for Natural Language Processing Text Generation and Encoder-Decoder Models

Ivan Titov (with graphics/materials from Elena Voita)



# Plan for today

Last time:

- Defined RNNs
- Used them for classification and language modeling
- Tried to understand what they capture

Today, we will

- see how to generate text from a neural language model (we will use RNNs but applicable to any other NN model)
- consider sequence-to-sequence tasks (e.g., machine translation)
- introduce a basic form of encoder-decoder models for seq2seq
- discuss how to evaluate text generation systems

# Recap: Neural Language Modeling

Neural language models has to:

- I. Produce a representation of the prefix
- 2. Generate a probability distribution over the next token



Predicting a word, given a prefix, it is just a classification problem!

## Recap: High-level intuition for a language model



 $p(y_t|y_{< t}) = rac{exp(m{h}_t^Tm{e}_{m{y}_t})}{\sum exp(m{h}_t^Tm{e}_{m{w}})}$  $w \in V$ 

## Recap: Multi-layer RNN language model



## Recap: Training the language model

Training is done in a very much the same way as we train a classifier!

 $Loss = -\log(p(y_t|y_{\leq t}))$ 





#### Generating text

To generate text using a language model, you could just *sample* tokens from the probability distribution predicted by a model



## Generating text

To generate text using a language model. you could just sample tokens from the probability distribution predicted by a model

Ι

#### Generating text: greedy decoding

An alternative to sampling from the distribution is selecting the most probable word at every step (called greedy decoding)

<u>so even</u> if the us , and the united states , the hotel is located in the list of songs , you can add them in our collection by this form . \_eos\_

<u>alas</u>, the hotel is located in the list of songs , you can add them in our collection by this form . \_eos\_

Anything you notice about these samples?

#### Generating text: greedy decoding

An alternative to sampling from the distribution is selecting the most probable word at every step (called greedy decoding)

<u>so even</u> if the us , and the united states , the hotel is located in the list of songs , you can add them in our collection by this form . \_eos\_

<u>alas</u>, the hotel is located in the list of songs , you can add them in our collection by this form . \_eos\_

Anything you notice about these samples?

They contain only frequent words and are boring!

#### Generating text: greedy decoding

An alternative to sampling from the distribution is selecting the most probable word at every step (called greedy decoding)

<u>so even</u> if the us , and the united states , the hotel is located in the list of songs , you can add them in our collection by this form . \_eos\_

<u>alas</u>, the hotel is located in the list of songs , you can add them in our collection by this form . \_eos\_

Anything you notice about these samples?

They contain only frequent words and are boring!

Greedy decoding is not generally a good way of producing text from a LM (but is a viable strategy when the output is more constrained, as in machine translation but we will talk later about it)

## Controling diversity

We want the generated text to be coherent (or fluent) but also diverse (or interesting)

The standard way of controlling the generation characteristics is the softmax temperature parameter



#### Temperature



#### Temperature – more formally



au - softmax temperature



## Temperature – more formally

$$\frac{\exp(h^T w)}{\sum_{w_i \in V} \exp(h^T w_i)}$$

$$\frac{\exp\left(\frac{h^T w}{\tau}\right)}{\sum_{w_i \in V} \exp\left(\frac{h^T w_i}{\tau}\right)}$$

#### au - softmax temperature

The most probably choice does not change, but with high temperatures, all the probabilities become closer to each other

The samples will become more diverse



Temperature: 4

## Temperature – more formally

$$\frac{\exp(h^T w)}{\Sigma_{w_i \in V} \exp(h^T w_i)} \to \frac{\exp\left(\frac{h^T w}{\tau}\right)}{\sum_{w_i \in V} \exp\left(\frac{h^T w_i}{\tau}\right)}$$

#### au - softmax temperature

The most probably choice does not change, but with low temperatures, all the probabilities become further away from each other

The samples will become more similar



## Trade-off: coherence vs diversity



The choice of temperature parameters is dependent on your goal / situation

There are smarter ways to sample from LMs (e.g., top-k sampling, / nucleus sampling)

## Summary so far

We now know how to

- build a neural network for language modeling
- train it on a corpus
- generate text from a neural language model

.. but how do we use these ideas if we want to solve a task?

- generate a translation of an English sentence into Chinese
- produce a summary of a document
- generate an answer to a question

## Sequence-to-Sequence modeling



## Encoder-decoder framework

- encoder reads source sequence and produces its representation;
- decoder uses source representation from the encoder to generate the target sequence.



## Language modeling perspective

Language Models: 
$$P(y_1, y_2, \dots, y_n) = \prod_{t=1}^n p(y_t | y_{< t})$$

Conditional  
Language Models: 
$$P(y_{1,}y_{2},...,y_{n},|x) = \prod_{t=1}^{n} p(y_{t}|y_{  
condition on source x$$

### Encoder-decoder in action



## Encoder-decoder: under the hood



A lot like in language modeling, which was a lot like in text classification!

### Simplest RNN-based Model:



#### Simplest RNN-based Model:

Last encoder states: near-paraphrases seem close in the space!



Sutskever et al. (2014)

## Training



$$Loss = -\log(p(y_t|y_{\leq t},x))$$



Encoder: read source





Target: I saw a cat on a mat <eos>

(video, not visible in pdf)

## Inference (aka decoding)

$$y' = \arg \max_{y} p(y|x) = \arg \max_{y} \prod_{t=1}^{n} p(y_t|y_{< t}, x)$$
 How to find the argmax?

The simplest idea – greedy decoding, at each step, pick the most likely token, but note:

$$\arg\max_{y} \prod_{t=1}^{n} p(y_t|y_{< t}, x) \neq \prod_{t=1}^{n} \arg\max_{y_t} p(y_t|y_{< t}, x)$$

Can we do better?

#### Beam search

Maintaining top hypotheses as you go



#### Start with the begin of sentence token or with an empty sequence

(video, not visible in pdf)

#### Beam search

#### Maintaining top hypotheses as you go



All hypotheses are complete - generation ended

# Why not sampling?

Actually, we can also sample in machine translation too (as with language modelling)

The risk is that a sample translation can deviate from the source sentence in meaning (i.e. hallucinate)

Evaluating text generation models

#### How to evaluate text generation?

Consider French to English machine translation

Source sentence: Le chat est assis sur le tapis

Human translation into English: The cat is on the carpet

#### How to evaluate text generation?

Consider French to English machine translation

Source sentence: Le chat est assis sur le tapis

Human translation into English: The cat is on the carpet

How can we design a metric which would score MTI > MT2?

MTI: The cat is seated on the mat

MT2: The chat is assassinated on the tape

(We are looking into automatic extrinsic evaluation, recall Bracket FI for parsing)

Idea: count overlapping ngrams - BLEU

Typically, we need more than I human (aka reference) translation per sentence to have reliable evaluation.

Let's focus on unigrams (individual tokens) for now

MT: The the the the the the a

Reference I: The cat is on the mat

Reference 2: There is a cat on the mat

(ignore capitalization for evaluation, i.e. treat 'The' and 'the' as the same word)

Idea: count overlapping ngrams - BLEU

MT: <u>The the the the the the the</u> a Reference I: <u>The</u> cat is on <u>the</u> mat

Reference 2: There is a cat on the mat

'the' appears 7 times

'the' appears 2 times

'the' appears 1 time

Modified unigram precision: 2 / 7

#### Idea: count overlapping ngrams - BLEU

MT:The the the the the the the the  $\underline{a}$ 'a' appears 1 timeReference 1:The cat is on the mat'a' appears 0 timesReference 2:There is  $\underline{a}$  cat on the mat'a' appears 1 timeModified unigram precision:(2 + 1) / (7 + 1) = 3 / 8

Aggregate over all unigrams in the MT ('candidate')

## **BLEU** metric

Actual BLEU is considerably more complicated, as needs to

- aggregate over the entire test set
- aggregate over ngrams of different order (unigrams, bigrams, ...)
- penalize short translation (remember from parsing: *precision* favors models producing short outputs)

There are other ngram overlap metrics which can be more suitable for other text generation problems (e.g., ROUGE for summarization)

## Ngram overlap metrics - weaknesses

- do not account for lexical paraphrases (e.g., substituting words with their synonyms)
- even more problematic for long text generation (e.g., document machine translation)
- unreliable for tasks with less restricted outputs (e.g., generate "a scary novel about Edinburgh")
- do not sufficiently penalize hallucinations

#### What can we do if they are so unreliable?

- Human evaluation (expensive, hard to relate to results of older experiments)
- Neural model-based metrics (e.g., BERT Score, GPTScore)
- Specialized metrics (e.g., FActScore for hallucinations)

#### **Tokenization**



We considered tokenization of sentences into 'words' (whatever we mean by a 'word')

## Tokenization

Word-level

- fixed vocabulary
- can process only a fixed number of words

Subword-level

- open vocabulary
- rare and unknown tokens are encoded as sequences of subword units

Instead of 'unrelated', we get two tokens 'un@@''related' Subword segmentations reduces sparsity and results in a speeds-up (recall: softmax involves summation over all token types, few token typs -> faster computation)

Crucial for morphologically-rich languages

Tokenization

Standard segmentation algorithms rely on character ngram frequency (not on morphology (e.g., Byte-Pair Encoding)

Used in virtually any modern neural model

# Summary

- Encoder-Decoder architecture for Seq2Seq
- Inference algorithms (greedy, beam-search, sampling, temperature,...)
- Evaluating text generation (e.g., BLEU)
- Subword tokenization