
Transformer

Recap: Vanilla encoder-decoders

Recap: Attention
Model learns to ‘pay attention’ to most relevant source tokens

Recap: attention is (a bit like) alignment

Transformer

“Attention is all you need”

Transformer: Intuition

See animation here:
https://blog.research.google/2017/08/transformer-novel-neural-network.html

https://blog.research.google/2017/08/transformer-novel-neural-network.html

Transformer: Intuition

See animation here:
https://blog.research.google/2017/08/transformer-novel-neural-network.html

https://blog.research.google/2017/08/transformer-novel-neural-network.html

Transformer: Intuition

Why do we need self-attention in the encoder?

Let’s recall RNNs

I saw a bat …

Which one is it?

Why do we need self-attention in the encoder?

Let’s recall RNNs

I saw a bat …

This states
Incorporates
the prefix, but
does it really
help

Why do we need self-attention in the encoder?

Let’s recall RNNs

I saw a bat …

This states
Incorporates
the prefix, but
does it really
help

In RNNs we used bidirectional encoders to incorporate the information
about the “future”

Why do we need self-attention in the encoder?

The self-attention is used in the Transformer to incorporate
information about the context (including future context)

batsaw hanging from a branchI

Learned end-to-end with an encoder-decoder model, so the
model will learn to produce token representations useful for the
decoder*

*this is going to be task-specific, e.g., representations useful for translation will be
different from those for sentiment analysis or summarization

The process repeated multiple times, once per layer,
iteratively refining the token representations

Encoder-decoder attention vs self- attention

aka “cross-
attention”

Self-attention

Recap: attention computation in encoder-decoder

aka ‘Luong attention’ aka ‘Bahdanau’ attention
(from the original paper)

Query-Key-Value attention

1. query- asking for information;
2. key - saying that it has some information;
3. value - giving the information.

In self-attention, each token plays 3 different roles
and has 3 different representations (1 per role)

Query-Key-Value attention

They all 3 are a result of a linear transformation of
the original representation

Query-Key-Value attention

Query-Key-Value attention

Transformer

“Attention is all you need”

Masked Attention

At inference time, the
decoder does not have
access to the future (because it
has not generated it yet)

The future is known in
training

But training needs to be
consistent with inference, so
we ‘mask’ future tokens when
training the representations in
the decoder

(you can think of this as a trick enabling fast training)

Multi-Head Attention

Each head specializes
on a different relation

Intuition: there are
different relations between
words in a sentence (e.g.,
subject ‘affects’ a verb in
a different way than its
object)

Multi-Head Attention

Each head specializes
on a different relation

Intuition: there are
different relations between
words in a sentence (e.g.,
subject ‘affects’ a verb in
a different way than its
object)

Multi-Head Attention

Each head specializes
on a different relation

Intuition: there are
different relations between
words in a sentence (e.g.,
subject ‘affects’ a verb in
a different way than its
object)

Multi-Head Attention

Each head specializes
on a different relation

Intuition: there are
different relations between
words in a sentence (e.g.,
subject ‘affects’ a verb in
a different way than its
object)

Multi-Head Attention

Each heads performs
independent QKV
attention (with their own
head-specific parameters,
i.e. Wk, Wq, Wv matrices)

Multi-Head Attention

Let’s say Q – is the set of states we look from
 K - is the set of states we look at
 V - is the set of states we take values from (usually K=V)

In encoder self-attention Q=K=V; they are represented as matrices (states = rows)

Multi-Head Attention

Each head has its own head-specific parameters, i.e. Wk,
Wq, Wv matrices

Let’s say Q – is the set of states we look from
 K - is the set of states we look at
 V - is the set of states we take values from (usually K=V)

Let’s say Q – is the set of states we look from
 K - is the set of states we look at
 V - is the set of states we take values from (usually K=V)

In encoder self-attention Q=K=V; they are represented as matrices (states = rows)

Multi-Head Attention

Each head has its own head-specific parameters, i.e. Wk,
Wq, Wv matrices

Then, the results are concatenated

Let’s say Q – is the set of states we look from
 K - is the set of states we look at
 V - is the set of states we take values from (usually K=V)

Let’s say Q – is the set of states we look from
 K - is the set of states we look at
 V - is the set of states we take values from (usually K=V)

In encoder self-attention Q=K=V; they are represented as matrices (states = rows)

Multi-Head Attention

In practice:

Multi-Head Attention

Each head has its own head-specific parameters, i.e. Wk,
Wq, Wv matrices

If we treat softmax scores as ‘constant’ (of course, they
are not constant): the result is a linear function of the
token representations.

Mult-Head Attention only weights and transforms them

Have you noticed something strange?
(think of properties of linear transformations)

Multi-Head Attention

Each head has its own head-specific parameters, i.e. Wk,
Wq, Wv matrices

Token representations are multiplied through Wv x Wo

Two linear transformations are still a linear
transformation

Transformer architecture

Feedforward blocks

Residual connections

Recall, we considered them for CNNs

Enable learning of deep architectures (i.e. many layers)

With residuals, non-adjacent modules ‘communicate’
between each other through the ‘residual channel’ or a
module can directly send information to the top level

 - is the mean of a token representation hk (across its dimension)

Layer Normalization

LayerNorm improves
training stability (but there are
alternatives to LayerNorm)

- is the standard deviation, computed analogously

scale and bias are trainable parameters

One layer – residual stream for a token

Image from Xiong et al., 2020

https://arxiv.org/pdf/2002.04745.pdf

Positional Encoding

Transformers (unlike RNNs) do not have a notion of order of
the tokens. To incorporate information about the order, we
use ‘position embeddings’

In the simplest form, position embeddings are just a collection of vectors, one per a
position (like word embeddings: one per word type). But better approaches exist

We should now know every block!

Interpretability

Recall, individual heads focus on different tokens (have
their individual attention modules)

It turns out many heads have interpretable roles

verb->subject
Encoder of a
machine translation
Transformer model

Interpretability

Recall, individual heads focus on different tokens (have
their individual attention modules)

It turns out many heads have interpretable roles

verb->object
Encoder of a
machine translation
Transformer model

Take-aways

• Transformer is the architecture which powers most of
state-of-the-art models in NLP and beyond

• The key component is attention (make sure you
understand it)
… but other components (residual connections, feed-
forward, position embeddings, and layer norm) play
important roles

• Heads can learn specialized and interpretable functions

• Lots of linearity in Transformers

