Foundations for Natural Language Processing

Transformer

lvan Titov
(with graphics/materials from Elena Voita)

® School of

informatics

We saw: encoder compresses

the source into a single vector

N

Encoder

—>

O00O0

g1t

!

S Bupen KOTHO Ha MaTe <eos>

"T" “"saw” “cat” "on" "mat”

\ -

I saw a cat ...

Pt

Decoder

(O N

os> I saw a cat

Problem: this is a bottleneck!

Model learns to ‘pay attention’ to most relevant source tokens

Attention
score(hg, i)
O How relevant is 0@ pG) p®)
for target step t?
Attention 9 P —r—

function /M M — M
N iNn (@) @)) ol |o] |o
ol ol Jo ol |o] Jo
o g (@) @) (@) O O _}O
o 5 ol lo] |o ol o] |o

(e) (@)
Encoder state Decoder state I I I I I
fortokenk: s, atstept: h; of 199 |99 [[O [© ol o] |[of |O
ol |0 |o |o ol |o ol |0 ol |0
@] O @) O (@) O O O O O
of [0 |9 [of [of |o o [o] |9 |o

9 BuAaen KOTHO Ha MaTe <eos>

— . <bos> I saw a
I" "saw

" w "nw

cat” “on" "mat”

Encoder Decoder

1=
2 5
] + A
© 0
8 8 8 © v S5 N ko]
v o o = 0 0o ¥V £ (S} 6 o)
C oDc ¢ 30 8O _ 30 5
F ©o o s ww<C 2 n E <A \Y a
L' = 5

Il

convient

de

noter

que

I
environnement
marin

accord

sur

la

zone
économique
européenne
a

été

signé

en

aolt

1992 !

environnement

<end> <end>

be

noted
that

the

marine

environment

is

the

least

known
of

environments

<end>

“Attention is all you need”

Seqg2seq without
attention
processing RNN/CNN
within encoder
processing RNN/CNN

within decoder

decoder-encoder static fixed-
interaction sized vector

Seqg2seq with
attention

RNN/CNN

RNN/CNN

attention

Transformer

attention

attention

attention

Transformer: Intuition

See animation here:
https://blog.research.google/2017/08/transformer-novel-neural-network.html

https://blog.research.google/2017/08/transformer-novel-neural-network.html

Transformer: Intuition

Encoding

| arrived at the

See animation here:
https://blog.research.google/2017/08/transformer-novel-neural-network.html

https://blog.research.google/2017/08/transformer-novel-neural-network.html

Encoder

Who is doing:

» all source tokens

What they are doing:

* |ook at each other
repeat

« update representations Ntimes

Decoder

Who is doing:

» targettoken at the current step

What they are doing:

» |ooks at previous target tokens
» |ooks at source representations

« update representation

repeat
N times

Let’'s recall RNNs

Initial RNN |o] [©o] |o] |o

O O O @)

state (e.9., ool oo

zero vector) o] |o| |o] |o
T T T Which one is it?

ol lo| [o

O O O

O O O

ol o] o

Let’'s recall RNNs

This states
Incorporates
. the prefix, but
Initial RNN o] [©] |©] |© does it really
state (e.9.. [al?lePlela help
zero vector) lo| o] |o| |eo V
O O Ol |O
ol 0] |o| |o
ol 0] |o| |o
O O Ol |0

saw a bat

Let’'s recall RNNs

This states
Incorporates
. the prefix, but
Initial RNN o] [©] |©] |© does it really
state (e.9.. [al?lePlela help
zero vector) |o] [o] [e] |o
O O O O
of o] |o] |o
of o] |o] |o
O O Ol |O

| saw a Dbat

In RNNs we used bidirectional encoders to incorporate the information
about the “future”

The self-attention is used in the Transformer to incorporate
information about the context (including future context)

' .‘- \ \]
| saw bat hanging from a branch

The process repeated multiple times, once per layer,
iteratively refining the token representations

Learned end-to-end with an encoder-decoder model, so the
model will learn to produce token representations useful for the
decoder*

*this is going to be task-specific, e.g., representations useful for translation will be
different from those for sentiment analysis or summarization

o | aka “cross-
Decoder-encoder attention is looking

e attention”
« from: one current decoder state

« at:all encoder states

Self-attention is looking

 from: each state from a set of states

o at:all other states in the same set

Self-attention

ore
o
Layerk+1 |e UUDDU
o
A update token
: 0 representation
|
Tokens try to : - T
understand | i gather context
themselves betterin | . T
context of each other softmax
: “look” at
: other tokens

Layer k

—3>»10 0 0
—3>»{0 0O
-—3>»10 0 O
-0 O O

-0 0 O

-—>»10 0 0

9 Buaen KOTHO Ha Marte <eos>
“IH '\Sawll “COT" “On“ “maT"

Recap:

Dot-product
T
h; >
X o] s,
@)

score(hg, sg) = hl s,

score(hy, i)

Attention
function

Bilinear
T
ht 8
X W Il X|of Sk
(@)

score(hg, si) = hI Ws,

aka ‘Luong attention’

Multi-Layer Perceptron

I

wa | | e
oo X tanh || Wq| X ||
1 (@)

OSk
O

score(hy, s;.) = wa - tanh(W, [he, 5])

aka ‘Bahdanau’ attention
(from the original paper)

In self-attention, each token plays 3 different roles
and has 3 different representations (1 per role)

1. query- asking for information;
2. key - saying that it has some information;
3. value - giving the information.

They all 3 are a result of a linear transformation of
the original representation

[] X = Query: vector from which
the attentionis looking

“Hey there, do you have this information?”

v : Key: vector at which the query
K looks to compute weights

“Hi, I have this information - give me a large weight!”

_ Value: their weighted sum is
attention output

“Heres the information I have!”

“cat”

Each vector receives three representations (“roles”) D D E D D D

[] X o] = E Query: vector from which
Q . .
the attentionis looking

“Hey there, do you have this information?”

» = Key: vector at which the query
K looks to compute weights

"Hi, I have this information - give me a large weight!”

Value: their weighted sum is
(W|x)= Vove rernes
attention output

“Heres the information I have!”

9 BuAen KOTHO HA MaTe <eos>
\\IH “SGW" “CGT" \\Onll \\ma_‘_ll

“cat”

JUgti0d

. . self-attention
Attention weights
| q k T | e ":::":'."’::::
Attention(q, k,v) = softmax () v e H O
r_‘ H
7N Vi FX 1K I L W}
from to /

vector dimensionality of K, V \ __softmax \

o
(@)
(@)
|
@)
@)
UYL
: f
4

BUAEN KOTHO HA Mate <eos>
\\IM “SGW" “CGT" “On” \\ma_‘_ll

—>[00 0

“Attention is all you need”

processing
within encoder

processing
within decoder

decoder-encoder
INnteraction

Transformer

attention

‘ attention \

attention

At inference time, the
decoder does not have

access to the future (because it
has not generated it yet)

}—(©09)

-
The future is known in o L] —
training y | scl>ftmax

But training needs to be El
consistent with inference, so E g 0 E E
we ‘mask’ future tokens when - {
training the representations in rrt T

the decoder <bos> I saw a cat

(you can think of this as a trick enabling fast training)

update token
representation

f

gather context

T

“look” at the
previous tokens
(future tokens are
masked out)

Each head specializes
on a different relation

Intuition: there are
different relations between
words in a sentence (e.g.,
subject ‘affects’ a verb in
a different way than its
object)

108000

S Buaen KOTHO Ha Mare <eos>

"I" "saw” “cat” "on" "mat”

heads work
independently

Multi-head attention

Each head specializes
on a different relation

Intuition: there are
different relations between
words in a sentence (e.g.,
subject ‘affects’ a verb in
a different way than its
object)

108000

head 1
head 2

o &
i
I " F 1.

9 Buaen KOTHO Ha Mare <eos>

softmax

& P P Y !

‘\IH \\SGWH '\COTM uonu “mGT“

heads work
independently

Multi-head attention

Each head specializes
on a different relation

Intuition: there are
different relations between
words in a sentence (e.g.,
subject ‘affects’ a verb in
a different way than its
object)

108000

head 1 g
head 2 |o
nead 3
........................... heads work
N e independently
f sy 7 o | B
softmax
foond | = : :
Multi-head attention

9 Buaen KOTHO Ha Marte <eos>
qu usawu “CGT“ uon“ “mOT“

Multi-Head Attention

Each head specializes D U
on a different relation

Intuition: there are head 1

different relations between head 2 S aerate
words in a sentence (e.g., head 3 |a outputs of all heads
sub;ect affects’ a verb in VRS A

a different way than its heads work
object) independently

Multi-head attention

9 Buaen KOTHO Ha MarTe <eos>
“IN “SGW“ “COT” \\onu “maT"

Each heads performs
independent QKV
attention (with their own
head-specific parameters,
i.e. Wy, W, W, matrices)

il

head 1
head 2

Jle ¢j|e o

head 3

head 4
W

saw" “cat”

<2 9
loo

P11

KOTHO Ha MaTe <eos>

Honu l\maTll

this is multi-head
attention output
?
concatenate
outputs of all heads
+ linear layer

heads work
independently

Multi-head attention

Let's say Q —is the set of states we look from
K - is the set of states we look at
V' - is the set of states we take values from (usually K=V)

In encoder self-attention Q=K=V; they are represented as matrices (states = rows)

Let's say Q — is the set of states we look from
K - is the set of states we look at
V' -is the set of states we take values from (usually K=V)

In encoder self-attention Q=K=V; they are represented as matrices (states = rows)

Each head has its own head-specific parameters, i.e. W,
W,, W, matrices

head; = Attention(QWé, K W}'{, VWf/)

Let's say Q — is the set of states we look from

K - is the set of states we look at
V' -is the set of states we take values from (usually K=V)

In encoder self-attention Q=K=V; they are represented as matrices (states = rows)

Each head has its own head-specific parameters, i.e. W,
W,, W, matrices

head; = Attention(QW,, KW, VWy,)
Then, the results are concatenated

MultiHead(Q@, K,V) = Concat(head;, ..., head,)W,

query, key,

In practice: value for-
0 [0 [9]
Splitequally — -|8}.|2}.{g}..<— heads
' o ol <— head
into number of -2}.-......] bol 2
of 1ol _lo] <— head
heads parts 8 Sf-.... = 3
O o) <— head,

o
O
[O0O0O00 000 3)[0
=
<

Each head has its own head-specific parameters, i.e. W,
W,, W, matrices

MultiHead(Q, K, V) = Concat(head;,...,head,)W,,
head; = Attention(QW¢,, KW, VWy,)
If we treat softmax scores as ‘constant’ (of course, they

are not constant): the result is a linear function of the
token representations.

Mult-Head Attention only weights and transforms them

Have you noticed something strange?
(think of properties of linear transformations)

Each head has its own head-specific parameters, i.e. W,
W,, W, matrices

MultiHead(Q, K, V) = Concat(head, ..., head,)W,,

head; = Attention(QWé, K W};—, VWf/)

Token representations are multiplied through W, x W,

Two linear transformations are still a linear
transformation

Residual connections

and layer normalizatjon
\

Feed-forward network:
after taking information from
other tokens, take a moment to

think and process this information \

T

Encoder self-attention: —_|

tokens look at each other

queries, keys, values
are computed from
encoder states

\

Output

Probabilities

Linear

\ \ ()
\ \ | Add & Norm
\ \ "
\ ~ Feed 4
\‘ \\ \ Forward
\ \ \
/ 1 3 Add & Norm /
Vg oo Multi-Head | -H
\\A Feed Attention
Forward
: T 7 Nx
.
Nix Y Add & Norm
f—>| Add & Norm | Masked
.| Multi-Head Multi-Head | <
Attention Attention
A J) At
O J \)
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Feed-forward network:
after taking information from
other tokens, take a moment to
think and process this information

T

Decoder-encoder attention:
target token looks at the source

queries — from decoder states; keys
and values from encoder states

T

Decoder self-attention (masked):
tokens look at the previous tokens

queries, keys, values are computed
from decoder states

__

Linear

T

RelLU
1

. [oooo0 000

4
Linear

FFN(x) = max(0,zW1 + b1)W3 + by

output

block with
some layers

N

input

Residual connection:
add a block’s input to
Its output

Recall, we considered them for CNNs

Enable learning of deep architectures (i.e. many layers)

With residuals, non-adjacent modules ‘communicate’
between each other through the ‘residual channel or a
module can directly send information to the top level

Layer

LayerNorm improves Normalization

training stability (but there are
alternatives to LayerNorm)

K - is the mean of a token representation h, (across its dimension)

O - is the standard deviation, computed analogously

scale and bias are trainable parameters

One layer — residual stream for a token

addition

e

addition

Multi-Head
Attention

Image from Xiong et al.. 2020

https://arxiv.org/pdf/2002.04745.pdf

Transformers (unlike RNNs) do not have a notion of order of
the tokens. To incorporate information about the order, we
use ‘position embeddings’

Encoder
" . " O © o O
token x on position k 0 o 0 o
@) & o @)
Input is sum of two T T
embeddings: for o (o) (2] (o) [[©) [°] [©
L (6] 71 (o] (] (o] ¥4 (o] Fi (@] =% [@] N1 (o] N'S (@)
token and position ol o] o o] ilo] [of o) |o
A :
tokens S iBuAen: KOTHO | <e0s> :
T isaw” iCcat” P i
positions 0: i1 2 3

............................

In the simplest form, position embeddings are just a collection of vectors, one per a
position (like word embeddings: one per word type). But better approaches exist

Residual connections

and layer normalizatjon
\

Feed-forward network:
after taking information from
other tokens, take a moment to

think and process this information \

T

Encoder self-attention: —_|

tokens look at each other

queries, keys, values
are computed from
encoder states

\

Output

Probabilities

Linear

\ \ ()
\ \ | Add & Norm
\ \ "
\ ~ Feed 4
\‘ \\ \ Forward
\ \ \
/ 1 3 Add & Norm /
Vg oo Multi-Head | -H
\\A Feed Attention
Forward
: T 7 Nx
.
Nix Y Add & Norm
f—>| Add & Norm | Masked
.| Multi-Head Multi-Head | <
Attention Attention
A J) At
O J \)
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Feed-forward network:
after taking information from
other tokens, take a moment to
think and process this information

T

Decoder-encoder attention:
target token looks at the source

queries — from decoder states; keys
and values from encoder states

T

Decoder self-attention (masked):
tokens look at the previous tokens

queries, keys, values are computed
from decoder states

Recall, individual heads focus on different tokens (have
their individual attention modules)

It turns out many heads have interpretable roles

you -

might-j 0.6 ¥

e

have %

heard 0'43

£ S

on 0.25

them . E)

] '0.0®

<eos>1 y . ¥

3 2 07D S € A
S5szs & &
Encoder of a e < c = 0

machine translation _
Transformer model verb->subject

Recall, individual heads focus on different tokens (have
their individual attention modules)

It turns out many heads have interpretable roles

she] .
rarely 0.6»
L
even: [=)
. 049
uses =
-
aj 0.2:3
pot: E)
. 0.0%
<e0S> i
G) >~. C U) (‘U A
c o O ¢ n
"853 35 3
= Y
Encoder of a _
machine translation verb->object

Transformer model

Transformer is the architecture which powers most of
state-of-the-art models in NLP and beyond

The key component is attention (make sure you
understand it)
... but other components (residual connections, feed-
forward, position embeddings, and layer norm) play
important roles

Heads can learn specialized and interpretable functions

Lots of linearity in Transformers

