
Transfer learning

Transfer learning

Typically, we do not have enough training data to estimate an
accurate model on the data for the target task

Consider question answering:

It is impossible to maintain a large and up-to-date collection of
question-answer pairs for all possible questions, domains, languages,
cultures…

How can we benefit from data for other tasks? (including tasks for
which data occurs ‘naturally’ such as language modeling = predicting next word)

Transfer learning

Transfer learning is a broad area

From Sebastian Ruder

Transfer learning is a broad area

How do we define the auxiliary model?
How do we represent the ‘knowledge’?
How do we integrate it in the target-task model?

Word Embeddings for Transfer Learning

Neural Text Classification

Training from scratch vs using pretrained

Pretrain and fine-tune

Starting with pretrained embeddings and then fine-tuning (= training)
them on the specific task enables the transfer of knowledge from a vast
dataset, while specializing the embedding to the target task and domain

Transfer through word embeddings

Limitations of transfer with word embeddings

- Word embeddings encode word meanings without considering
context, merging all senses of a word

- They also do not represent larger linguistic units (phrases,
sentences, paragraphs).

The target model, thus, has to learn disambiguation and composition
from limited task-specific data.*

Even more limiting for text generation tasks – the model needs to learn,
e.g., how to achieve fluency on the target-task data alone

*however, for some tasks like topic classification, these processes are less critical, so
transfer with embeddings can work well

Using a model to acquire the knowledge and
transferring the model to the target task

Key ideas

The two great ideas:

- what is encoded: from words to words-in-context
(the transition from Word2Vec to ELMo)

- usage for downstream tasks: from replacing only word embeddings in
task-specific models to replacing entire task-specific models
(the transition from ELMo to GPT/BERT)

Transferring words-in-context

If successful, the representation of the word will both
disambiguate the term and also specialize it for the given
context

Transferring words-in-context

What is ELMo (or CoVe)?

Word representation with a bidirectional RNN

This is the cat on the mat
and that is the cat that I saw

If the RNNs are successfully trained (how?), the marked two states
together will represent this information

The pair of states can be used as word-in-context representation

Training RNNs to predict a ‘masked’ word

This X was on a mat
and this is X that I saw

The two states do not carry information about the token ‘cat’

We can train the RNNs to predict the left-out word relying these
two states! (masked language modeling)

“Embeddings from Language Models” (ELMo;
NAACL 2018 best paper award)

Why masking words is a good task?

Why training a model to predict a missing word a good pretraining task?
Ø Because it makes the model acquire a range of capabilities, which can be useful

for a range of different target tasks

Examples by Pasquale Minervini

ELMo is a bit more complicated

Having more than one layer is crucial, it is not only about the expressivity!
(ask me why but don’t expect a short answer)

ELMo is a bit more complicated

The word embeddings are computed from character embeddings
 – makes it possible to handle ‘unseen’ words [an alternative to more common

subword tokenization, from lecture 26]

This provides an inductive bias that words with similar spellings often have similar
meaning (e.g., running, run, runner, runs)

Let’s not worry
about these details
too much

How do we actually use ELMo embeddings

Word representation with a bidirectional RNN

On top of weighted sum of ELMo layers, you then train a task-specific model

ELMo was a very important model, resulting in big progress over ’static’ word
embeddings across a range of tasks

Where are we in the lecture?

The two great ideas:

- what is encoded: from words to words-in-context
(the transition from Word2Vec to ELMo)

- usage for downstream tasks: from replacing only word embeddings in
task-specific models to replacing entire task-specific models
(the transition from ELMo to GPT/BERT)

Pre-training a model and fine-tuning this model on the target task

BERT: Bidirectional Encoder Representations from Transformers
NAACL 2019 best paper award

We will ignore NSP as later studies have demonstrated that it was not
particulary useful (the subsequent RoBERTa model ditched NSP)

Once trained, we can use BERT as a usual Transformer
encoder, but let’s understand how to train it first

Masked language modeling objective
Similar to ELMo’s objective, but the RNN state-selection trick cannot be used with Transformers

Masked language modeling objective
Similar to ELMo’s objective, but the RNN state-selection trick cannot be used with Transformers

Masked language modeling objective
Similar to ELMo’s objective, but the RNN state-selection trick cannot be used with Transformers

Masked language modeling objective
Similar to ELMo’s objective, but state-selection trick cannot be used with Transformers

Masked language modeling objective

Masked language modeling objective
Similar to ELMo’s objective, but the state-selection trick cannot be used with Transformers

Masked language modeling objective

Masked language modeling vs language modeling

MLM is still language modeling: the goal is to predict some tokens in a
sentence/text based on some part of this text (strictly speaking it is called pseudo-
likelihood)

The advantage of LM is that we do not need annotated data, this is a task
which both can instantiated on unlabeled data and requires (at least for a subset
of predictions) acquiring complex and diverse text ‘understanding’

https://en.wikipedia.org/wiki/Pseudolikelihood
https://en.wikipedia.org/wiki/Pseudolikelihood

Using BERT for downstream tasks

Classification: take pretained BERT, add a classifier on top
and fine-tune (i.e. optimize the parameters) for the target task

This is just a special token.
With BERT, it was used
within NSP objective (see
earlier). In practice, it can
be just any extra token

Sequence tagging: PoS tagging or named entity recognition

Using BERT for downstream tasks

Question answering on a basis of text passage: mark the
position where the answer starts and ends

Again, a
special
token

Using BERT for downstream tasks

Using BERT for downstream tasks

The key limitation of BERT – it is (almost) impossible to
use BERT to generate text, so what do you do if you
downstream task is a generation task (e.g.,
summarization, report generation, chat or translation)?

The solution: pretrain on the standard language modelling
objective rather than masked language modelling (GPT,
GPT-2, ...)

(or pretrain encoder-decoder models, such as Google’s T5)

Current trends and hot research topics
• Very large models, trained on lots of data (running out of text created by humanity...)

• Emerging abilities:
• e.g., in context learning – a training set is provided as input to the model

in the prompt

• Making models follow instructions / complex prompts
• through fine-tuning on data for various instruction-following tasks and

using human feedback

• Effective ways of fine-tuning these huge models

• Multimodal models (images, video, speech, …)

• Interpretability

• Using language models in other domains (e.g., for planning in robotics)

• Risks and biases
• attempts to make large language models safe(r)

Take aways

• Transfer learning is behind current successes in NLP

• Word embeddings provide a simple but somewhat limited
way of achieving the transfer

• Word-in-context embeddings

• Pre-training with (masked) language modeling

• Pre-train and fine-tune methodology

