Foundations for Natural Language Processing

Revision

Ivan Titov

Recall: class goals

- We focused mainly on core ideas and methods needed for language technologies (and eventually for applications).
 - Linguistic facts and issues
 - Computational models and algorithms
- We provided also a preview to (nearly) state-of-the-art methods
- ... but more advanced methods and specific application areas are covered in 4/5th year courses:
 - Natural Language Understanding, Generation and Machine Translation (NLU+)
 - Automatic Speech Recognition

Today

- We will go <u>briefly</u> over the material and I will highlight some topics and ideas ...
 - Important: do not assume that if I have not highlighted a certain topic, it is not going to be examined
- Ask questions about the class
 - Especially about my part but I will try my best to answer questions about other parts as well

Revision

- Do readings from Jurafsky & Martin (and other sources we pointed out)
 - We won't examine what has not been at all discussed in the class ...
 - but the the materia covers much of it in more detail, with more examples...
 - \Box It will definitely help you prepare better to the exam

Use lecture slides / recording and quizzes

Ambiguities / Challenges in NLP

- Remember different challenges for NLP (e.g., sparsity, ambiguity, robustness, ...)
 - Be ready to identify the key challenges for a given specific setting
 - (and ways to circumvent these challenges)
- Ambiguity
 - A topic we discussed a lot in the class
 - Why a problem? How to deal with it? Types of ambiguities?

Annotation and evaluation

- Make sure you understand challenges and considerations in defining annotation guidelines and organizing annotation
 - E.g., be ready to examine two potential annotation schemas and discuss pros and cons
- Make sure you understand how to evaluate different types of NLP models and hypotheses
 - E.g., you can be asked to consider a specific setting / application and come up with a way of evaluating NLP tools, or discuss advantages / disadvantages of alternatives
 - We also talked about the evaluation in the context of seq2seq models (ngram overlap metrics, BLEU)

Language Models

- Ngram language models
 - How to estimate? Limitations?
- Smoothing (for LM and more generally)
 - Methods you discussed with Alex
- Neural language models
 - Contrast them with ngram models (will get back to it)
- Evaluation of language models

ML techniques

Naïve Bayes and Logistic Regression

- incl. their pros / cons, contrast with <u>Neural Classifiers</u>
- Estimation, Inference ('the use')

Tagging / Part-of-speech tagging

Hidden Markov Models

Algorithms:

- Viterbi (edit distance, HMM)
- Expectation Maximization (informally, the way we introduced it in the class)
- Forward algorithm for HMMs

Be able to deal with novel problems

- Methods are your toolbox
- Be prepared to reduce a given problem to the modeling set-ups we discussed
 - How can we convert a problem into a (set of) classification problems? Sequence labelling problem?
- ▶ The same for algorithms, evaluation, ...

Morphology

Morphology

- across languages
- Parsing / generation
- Finite state transducers

Syntactic parsing

- Syntactic ambiguity
 - Types, challenges
- (Probabilistic) CFGs
 - Estimation for PCFGs
 - CKY for CFGs and PCFGs
 - Weaknesses of treebank PCFGs
 - Producing more powerful PCFGs
 - Evaluation
- Dependency parsing
 - Relations to constituency syntax / head rules
 - Transition-based parsing
 - Non-projectivity
 - Intuition for Graph-based vs Transition-based

Compositional semantics

- First order logic vs. propositional logic
 - Why / when one and another

Principle of compositionality

- Augmenting grammars with logic
- Scope ambiguity

More semantics / lexical semantics

Word senses

- Relations / classes
- The generative lexicon
- Word sense disambiguation
- Distribution semantics
 - Understand the underlying assumption (what it can do, what it cannot do...)
 - Count-based methods and LSA
 - Neural Embeddings
 - SkipGram, including negative sampling

Neural networks for classification

- Neural classification and connection to logistic regression
- Bags of embeddings
- Convolutional neural networks
 - their relations to ngram models
 - interpretability
- Recurrent Neural Networks
- Differences in their expressivity, multilayer/multidirectional architectures

Neural networks for language modeling

- Reduction to classification
- Relations to smoothing in ngram models
- Estimation
- Decoding (greedy, sampling with temperature..)

Sequence-to-Sequence modeling

- From language modeling to seq2seq
- Vanilla Encoder-Decoder and its weakness
- Attention (please remember scoring functions; but don't have to remember details of Luong / Bahdanau architecture)
- Training / decoding
- Issues (e.g., hallucination)
- Evaluation for text generation

Transformers

- QKV attention
- Multi-head attention model
- Key modules and how they fit together
- Masked attention
- Linearities and Interpretability

Transfer learning

- Transfer learning with word embedding, its version and limitations
- Word-in-context (ELMO)
- Pretrain and fine-tune (BERT)
- Masked language modelling objective

This is all!

Thank you for attending the class and good luck at the exam