
Foundations of Natural Language Processing
Lecture 18

Compositional Semantics

Alex Lascarides

Alex Lascarides FNLP Lecture 18

Meaning

Last Time: Syntactic parsing

Now: How can syntax inform meaning?

• Desiderata for formal semantic representations of sentences
• Method for constructing semantic representations from a syntax tree.

Alex Lascarides FNLP Lecture 18 1

Meaning

• One grand goal of artificial intelligence is to understand what people mean
when they talk.

• But how do we know if we succeeded?

Alex Lascarides FNLP Lecture 18 2

Literal Meaning

Semantics is concerned with how expressions relate to ‘the world’. This includes
both their

• truth conditions and denotation (literal meaning)

• connotation (other associations)

For now, we’re interested only in literal meaning.

Alex Lascarides FNLP Lecture 18 3

Eliza

Joseph Weizenbaum wrote the computer program Eliza in 1969 to demonstrate
how easily people can be fooled into thinking that machines have some deep
understanding.

young woman: Men are all alike.

eliza: In what way?

young woman: They’re always bugging us about something specific or other.

eliza: Can you think of a specific example?

young woman: Well, my boyfriend made me come here.

eliza: Your boyfriend made you come here?

young woman: He says I’m depressed much of the time.

eliza: I am sorry to hear you are depressed.

young woman: It’s true. I’m unhappy.

eliza: Do you think coming here will help you not to be unhappy?

Online demo: https://psych.fullerton.edu/mbirnbaum/psych101/eliza.htm

Alex Lascarides FNLP Lecture 18 4

Large Language Models

• Huge models trained (≈90B parameters) on trillions of words

• Tasked with predicting the next word, given context.

• Big Data leads to massive sensitivity of context.

• Result is fluent, coherent,

• But no predictable relationship to truth about the world

• No underlying intent (even if the user is fooled to think there is).

Alex Lascarides FNLP Lecture 18 5

Large Language Models: Hallucination

user: who is the sole survivor of the Titanic
ChatGPT: The sole survivor of the Titanic disaster was Charles Joughin.

He was a baker. . .
user: Can you provide sources for this answer?

ChatGPT: I apologise for any confusion, but there has been a misunderstanding.
Charles Joughin was not the sole surivor. . .

• What if you didn’t ask the question about sources?

• ChatGPT makes up citations and sources in its answers anyway

• Regularly gets facts in requested biographies wrong. Defamation?

Alex Lascarides FNLP Lecture 18 6

What is meaning? What is understanding?

• These are deep philosophical questions

• NLP usually takes a more pragmatic view: can the computer behave as though
it understands (in order to do what we want)?

– Dialogue systems (e.g., Eliza)
– Machine translation
– Question answering

• What issues will we face in building such systems?

Alex Lascarides FNLP Lecture 18 7

A Concrete Goal

• We would like to build

– a machine that answers questions in natural language.
– may have access to knowledge bases
– may have access to vast quantities of English text

• Basically, think Alexa!

• This is typically called Question Answering

Alex Lascarides FNLP Lecture 18 8

Semantics

• To build our QA system we will need to deal with issues in semantics, i.e.,
meaning.

• Sentential semantics: how word meanings combine (study now)

– Who did what to whom; when, how, why. . .
John loves Mary 6= Mary loves John

⇒ Someone loves Mary

• Lexical semantics: the meanings of individual words (study after that)
E.g., John is male, Mary is female,
loves is more closely related to like than to sees, antonym of hate. . .

Alex Lascarides FNLP Lecture 18 9

What we’ve learned so far about sentential syntax

• It captures linguistic generalisations about grammaticality (substitutability)

• It generates an unbounded set of grammatical sentences via a finite lexicon
and finite rules (recursion)

• We can induce probabilistic grammars from a treebank,
and so tackle (pervasive) syntactic ambiguity.

Alex Lascarides FNLP Lecture 18 10

What about Meaning? Spoiler Alert!

• Sentential syntax reveals information about sentence meaning
John loves Mary 7→ love(j,m)
Mary loves John 7→ love(m, j)

• Decisions about how to resolve syntactic ambiguity are tied up with decisions
about (intended) meaning.

• Syntactic ambiguity (almost) always yields a semantic ambiguity.

• Resolving syntactic ambiguities does not, however, resolve all semantic
ambiguities

– word sense, semantic scope, anaphoric expressions
(all to be studied later in this course)

so reasoning about context is also very important
(also studied later in this course)

Alex Lascarides FNLP Lecture 18 11

What we’ll study now. . .

• Principle of Compositionality

• Exploit compositionality to augment a grammar with a semantic component,
which deterministically derives the logical form of a sentence from its syntax
tree.

Alex Lascarides FNLP Lecture 18 12

Desiderata for (Literal) Semantic Representations

The semantic representation should:

• be unambiguous
(> 1 semantic representation for I made her duck etc)

• support automated inference

• be verifiable: determine if the sentence is true with respect to a model of the
world.

Answer: First order logic

Alex Lascarides FNLP Lecture 18 13

An Aside: Logical vs. Commonsense inference

For now:

• John buttered toast at midnight on the lawn ⇒
Someone buttered toast, Someone did something at midnight . . .

For later:

• The purchase of Houston-based LexCorp by BMI for $2B prompted widesprad
sell-offs by traders ⇒
BMI acquired an American company (from RTE)

• John buttered toast at midnight on the lawn ⇒
Some food preparation took place in the dark, with the cook standing on grass.

Alex Lascarides FNLP Lecture 18 14

Why FoL and not Propositional Logic?

Fred eats lentils or he eats rice. (P ∨ Q)
Fred eats rice or John eats rice (P ∨ R)

• Doesn’t capture the internal structure of the proposition Fred ate rice
(e.g. how its meaning is derived from that of “Fred”, “ate”, “rice”).

• We’re unable to express important relationships between, e.g.

– Everyone eats rice ` Someone eats rice, Everyone eats something.
– Fred eats rice ` Someone eats rice

• Fred ate rice: eat(fred , rice) (i)
Everyone ate rice: ∀x.eat(x, rice) (ii)
Someone ate rice: ∃x.eat(x, rice) (iii)
Every dog had a bone: ∀x(dog(x)→ ∃y(bone(y) ∧ have(x, y))) (iv)

∃y(bone(y) ∧ ∀x.(dog(x)→ have(x, y) (v)

(ii) entails (i) and (iii); (i) entails (iii); (v) entails (iv)!

Alex Lascarides FNLP Lecture 18 15

Adding tense and modifiers:
Davidsonian Semantics

Introducing an event argument e to ‘action’ predicates is very useful:

Tense: Fred ate rice: ∃e(eat(e, fred , rice) ∧ e ≺ n)

Modifiers: Fred ate rice with a fork at midnight:
∃e(eat(e, fred , rice) ∧ e ≺ n∧

∃x(with(e, x) ∧ fork(x))∧
at(e,midnight)

Note how the second sentence entails the first via ∧-elimination!

Alex Lascarides FNLP Lecture 18 16

Compositionality

• Compositionality: The meaning of a complex expression is a function of the
meaning of its parts and of the rules by which they are combined.

• So you can build a logical form of a sentence by specifying:

Lexical meanings: Associate each word in the lexicon with a FoL expression.
Composition rules: Augmenting each syntax rule in a CFG with instructions

for composing the FoL expressions on the RHS into a FoL expression for the
LHS.

Alex Lascarides FNLP Lecture 18 17

What we’re aiming for

S
∃e(eat(e, fred , rice) ∧ e ≺ n)

NP

PropN

Fred
fred

VP

Vt

ate
∃e(eat(e, ?1, ?2) ∧ e ≺ n)

NP

MassN

rice
rice

• How do we get the bits to combine?

• What are the LFs of the intermediate nodes?

Alex Lascarides FNLP Lecture 18 18

Lambda Calculus and Beta Reduction

Allows us to work with ‘partially constructed’ formulae!

• If ϕ is a well-formed FoL expression and x is a variable, then
λxϕ is a well-formed FoL expression. It’s a function, known as a λ-term.

• λ-terms have interesting semantics, but they also offer a way of substituting
(free) variables in an FoL expression with values.

λxϕ(a) = ϕ[x/a]

• Creating a function λxϕ from an expresion ϕ is called Lambda (λ) abstraction
Function application is called Beta (β) reduction.

Example:

• λyλx(∃e(eat(e, x, y) ∧ e ≺ n))(rice) becomes
λx(∃e(eat(e, x, rice) ∧ e ≺ n))

Alex Lascarides FNLP Lecture 18 19

Introducing variables corresponding to properties,
relations. . .

• If we introduces variables of ‘higher type’ then we can substitute variables
corresponding to properties, relations etc with values that can be λ-terms!!

• λP.P (fred):
the properties of Fred (man, tall,. . .)
λP .P (fred)(man) becomes man(fred)

An example where the argument is a λ-term:

• λP (P (fred))(λx(∃e(eat(e, x, rice) ∧ e ≺ n))) becomes
λx(∃e(eat(e, x, rice) ∧ e ≺ n))(fred) becomes
∃e(eat(e, fred , rice) ∧ e ≺ n)

Alex Lascarides FNLP Lecture 18 20

Example Composition for Fred ate rice

But we’ll see in a minute why it’s problematic. . .
. . . and why λ-abstraction on higher types provides a solution!

S
λx∃e(eat(e, x, rice) ∧ e ≺ n)(fred)
∃e(eat(e, fred , rice) ∧ e ≺ n)

NP
fred

PropN
fred

Fred
fred

VP
λyλx∃e(eat(e, x, y) ∧ e ≺ n)(rice)
λx∃e(eat(e, x, rice) ∧ e ≺ n)

Vt
λyλx∃e(eat(e, x, y) ∧ e ≺ n)

ate
λyλx∃e(eat(e, x, y) ∧ e ≺ n)

NP
rice

MassN
rice

rice
rice

Alex Lascarides FNLP Lecture 18 21

The Grammar that generates that tree

S → NP VP VP.Sem(NP.Sem) (Sentences)
NP → MassN MassN.Sem | PropN PropN.Sem (Noun phrases)
VP → Vi Vi.Sem | Vt NP Vt.Sem(NP.Sem) (Verb phrases)
PropN → Fred fred | Jo jo. . . (Proper nouns)
MassN → rice rice | wood wood . . . (Mass nouns)
Vi → talked λx∃e(talk(e, x) ∧ e ≺ n) | . . . (Intransitive verbs)
Vt → ate λyλx.∃e(eat(e, x, y) ∧ e ≺ n) | . . . (Transitive verbs)

Observations:

• λ-term for Vt ensures NP values are in right positions to predicate eat

• Rules with two daughters specify in semantics which daughter is the functor
and which the argument

– S rule: VP is the functor.
– Transitive VP rule: Vt is the functor.

• Unary rules ‘pass up’ the semantics from the daughter.

Alex Lascarides FNLP Lecture 18 22

Problematic!

Every man ate rice: ∀x(man(x)→ ∃e(eat(e, x, rice) ∧ e ≺ n))

Breaking it down:

• What is the meaning of Every man anyway?
∀x(man(x)→ Q(x))

• If so, the subject NP needs to be:
λQ∀x(man(x)→ Q(x))

• But in our grammar we had the VP as the functor:
S → NP VP VP.Sem(NP.Sem)

• λz∃e(eat(e, z, rice) ∧ e ≺ n)(λQ∀x(man(x)→ Q(x))) becomes
λz∃e(eat(e, λQ∀x(man(x)→ Q(x)), rice) ∧ e ≺ n)

• That’s not even syntactically well-formed!!

Alex Lascarides FNLP Lecture 18 23

Solution

Make NP the functor and VP the argument.

S → NP VP NP.Sem(VP.Sem)

λQ∀x(man(x)→ Q(x))(λz∃e(eat(e, z, rice) ∧ e ≺ n))
∀x(man(x)→ λz∃e(eat(e, z, rice) ∧ e ≺ n))(x))
∀x(man(x)→ ∃e(eat(e, x, rice) ∧ e ≺ n))

But this means NPs must all look like this: λP.P (x).
Fred 7→ λP.P (fred) etc.

Alex Lascarides FNLP Lecture 18 24

Now a problem with transitive verbs!!

ate every grape:
λyλz∃e(eat(e, z, y) ∧ e ≺ n) λQ∀x(grape(x)→ Q(x))

NP.Sem(Vt.Sem) is ill formed!

λQ∀x(grape(x)→ Q(x))(λyλz∃e(eat(e, z, y)∧ ≺ n)) becomes
∀x(grape(x)→ λyλz∃e(eat(e, z, y) ∧ e ≺ n)(x) becomes
∀x(grape(x)→ λz∃e(eat(e, z, x) ∧ e ≺ n)) ill-formed!

It should be: λz∀x(grape(x)→ ∃e(eat(e, z, x) ∧ e ≺ n))

Alex Lascarides FNLP Lecture 18 25

Type Raising to the rescue again

VP → Vt NP Vt.Sem(NP.Sem)
Vt → ate λR.λz.R(λy.∃e(eat(e, z, y) ∧ e ≺ n))

ate every grape:

λR.λz.R(λy.∃e(eat(e, z, y) ∧ e ≺ n))(λQ∀x(grape(x)→ Q(x))) becomes
λzλQ∀x(grape(x)→ Q(x))(λy.∃e(eat(e, z, y) ∧ e ≺ n)) becomes
λz∀x(grape(x)→ λy.∃e(eat(e, z, y) ∧ e ≺ n)(x)) becomes
λz∀x(grape(x)→ ∃e(eat(e, z, x)))

Alex Lascarides FNLP Lecture 18 26

Grammar Refined! (Changes in purple)

S → NP VP NP.Sem(VP.Sem) (Sentences)
NP → MassN MassN.Sem | PropN PropN.Sem | (Noun phrases)

Det N Det.Sem(N.Sem)
VP → Vi Vi.Sem | Vt NP Vt.Sem(NP.Sem) (Verb phrases)
PropN → Fred λP.P (fred) | . . . (Proper nouns)
MassN → rice λP.P (rice) | . . . (Mass nouns)
Vi → talked λx∃e(talk(e, x) ∧ e ≺ n) | . . . (Intransitive verbs)
Vt → ate λR.λz.R(λy.∃e(eat(e, z, y) ∧ e ≺ n)) (Transitive verbs)
N → man λx.man(x) (Count Nouns)
Det → a λPλQ∃x(P (x) ∧Q(x)) | (Determiners)

every λQλQ∃x(P (x)→ Q(x))

Alex Lascarides FNLP Lecture 18 27

Example Derivation: Every man ate rice

S
λQ.∀x(man(x)→ Q(x))(λz.∃e(eat(e, z, rice) ∧ e ≺ n))
∀x(man(x)→ λz.∃e(eat(e, z, rice) ∧ e ≺ n)(x))
∀x(man(x)→ ∃e(eat(e, x, rice) ∧ e ≺ n))

NP
λPλQ∀x(P (x)→ Q(x))(λz.man(z))

λQ∀x(λz.man(z)(x)→ Q(x))
λQ∀x(man(x)→ Q(x))

Det

every
λPλQ∀x(P (x)→ Q(x))

N

man
λz.man(z)

VP
λR.λz.R(λy∃e(eat(e, z, y) ∧ e ≺ n))(λP.P (rice))

λz.λP.P (rice)(λy∃e(eat(e, z, y) ∧ e ≺ n))
λz.(λy.∃e(eat(e, z, y) ∧ e ≺ n)(rice))

λz.∃e(eat(e, z, rice) ∧ e ≺ n)

Vt

ate
λR.λz.R(λy∃e(eat(e, z, y) ∧ e ≺ n))

NP

MassN

rice
λP.P (rice)

Alex Lascarides FNLP Lecture 18 28

Every man loves a woman Other reading??

S
λQ.∀x(man(x)→ Q(x))(λz.∃w(woman(w) ∧ ∃e(love(e, z, w) ∧ n ⊆ e)))

∀x(man(x)→ λz.∃w(woman(w) ∧ ∃e(love(e, z, w) ∧ n ⊆ e)))
∀x(man(x)→ ∃w(woman(w) ∧ ∃e(love(e, x, w) ∧ n ⊆ e)))

NP
λPλQ(P (x)→ Q(x))(λz.man(z))

λQ(λz.man(z)(x)→ Q(x))
λQ(man(x)→ Q(x))

Det

every
λPλQ∀x(P (x)→ Q(x))

N

man
λz.man(z)

VP
λR.λz.R(λy∃e(love(e, z, y) ∧ n ⊆ e))(λT∃w(woman(w) ∧ T (w))) 7→

λz.∃w(woman(w) ∧ ∃e(love(e, z, w) ∧ n ⊆ e))

Vt

loves
λR.λz.R(λy∃e(love(e, z, y) ∧ n ⊆ e))

NP
λSλT∃w(S(w) ∧ T (w))(λz.woman(z))

λT∃w(woman(w) ∧ T (w))

DET

a
λS.λT∃w(S(w) ∧ T (w))

N

woman
λz.woman(z)

Alex Lascarides FNLP Lecture 18 29

Semantic Ambiguity

• Every man loves a woman has two different interpretations because of its
determiners:

– Possibly a different woman per man
∀x(man(x)→ ∃y(woman(y) ∧ ∃e(love(e, x, y) ∧ n ⊆ e)))

– The same woman for all men
∃y(woman(y) ∧ ∀x(man(x)→ ∃e(love(e, x, y) ∧ n ⊆ e)))

• But the English sentence isn’t syntactically ambiguous!!

Alex Lascarides FNLP Lecture 18 30

Scope

• The ambiguity arises because every and a each has its own scope:

Interpretation 1: every has scope over a
Interpretation 2: a has scope over every

• Scope is not uniquely determined either by left-to-right order,
or by position in the parse tree.

• We therefore need other mechanisms to ensure that the ambiguity is reflected
in the LF assigned to S.

Alex Lascarides FNLP Lecture 18 31

Scope ambiguity, continued

The number of interpretations grows exponentially with the number of scope
operators:

Every student at some university has access to a laptop.

1. Not necessarily same laptop, not necessarily same university

∀x(stud(x) ∧ ∃y(univ(y) ∧ at(x, y))→ ∃z(laptop(z) ∧ have access(x, z)))

2. Same laptop, not necessarily same university

∃z(laptop(z) ∧ ∀x(stud(x) ∧ ∃y(univ(y) ∧ at(x, y))→ have access(x, z)))

3. Not necessarily same laptop, same university

∃y(univ(y) ∧ ∀x((stud(x) ∧ at(x, y))→ ∃z(laptop(z) ∧ have access(x, z))))

4. Same university, same laptop ∃y(univ(y) ∧ ∃z(laptop(z) ∧ ∀x((stud(x) ∧ at(x, y))→ have access(x, z))))

5. Same laptop, same university ∃z(laptop(z) ∧ ∃y(univ(y) ∧ ∀x((stud(x) ∧ at(x, y))→ have access(x, z))))

where 4 & 5 are equivalent

Every student at some university does not have access to a computer.
→ 18 interpretations

Alex Lascarides FNLP Lecture 18 32

Coping with Scope: options

Enumerate all interpretations: Computationally unattractive!

Semantic Underspecification: Build LFs via syntax that underspecify the
relative semantic scopes of the quantifiers

• Partial description of a FoL formula
• So Syntax-Tree:LF is 1:1, but the LF describes several FoL formulae

and hence several interpretations

Sometimes the surrounding context will help us choose between interpretations:

Every student has access to a computer. It can be borrowed from the ITO.
(⇒ a outscopes every)

Alex Lascarides FNLP Lecture 18 33

Semantic Underspecification

• The LF constructed in the grammar features:

1. FoL bits
2. constraints on how they can combine into an FoL formula

• The constraints are satisfied by more than one FoL formula.

Alex Lascarides FNLP Lecture 18 34

A Picture showing common bits and different bits

∀x

man(x) → ∃y

woman(y) ∧ ∃e(love(e, x, y) ∧ n ⊆ e)

∃y

woman(y) ∧ ∀x

man(x) → ∃e(love(e, x, y) ∧ n ⊆ e)

Alex Lascarides FNLP Lecture 18 35

Technique

• Label nodes of the tree: l1, l2 . . .

• Supply constraints on what FoL expressions appear at those labels

Every man loves a woman.

Ignoring ∃e and n ⊆ e. . .

l1 : ∀x(h2 → h3)
l2 : man(x)
l3 : love(e, x, y)
l4 : ∃y(h4 ∧ h5)
l5 : woman(y)
h2 =q l2, h4 =q l5

Alex Lascarides FNLP Lecture 18 36

Resolving Scope

l1 : ∀x(h2 → h3)

l2 : man(x)

l3 : love(e, x, y)

l4 : ∃y(h4 ∧ h5)

l5 : woman(y)

h2 =q l2, h4 =q l5

• All hs must equal a (unique) l; no free variables

• So there are two solutions:

∃ outscopes ∀: h2 = l2, h4 = l5, h3 = l3h5 = l1
∀ outscopes ∃: h2 = l2, h4 = l5, h3 = l4, h5 = l3

• LF construction via the grammar must now λ-abstract labels, as well as
predicates, arguments to predicates etc.

Alex Lascarides FNLP Lecture 18 37

Summary

• Syntax guides semantic composition in a systematic way.

• Lambda expressions facilitate the construction of compositional semantic
interpretations off the syntax tree.

– Associate each word with a λ-term
– Within the grammar, say which daughter is the functor.

• However, semantic scope ambiguities suggest that not all semantic ambiguities
should surface as syntactic ambiguities within the grammar.

• There are solutions to this that exploit semantic underspecification.

Next Lecture: Semantic Role Labelling

Alex Lascarides FNLP Lecture 18 38

