
FNLP Tutorial 2

Question 1. Evaluating data annotations

Imagine that this is your small corpus of named entities in a simple task, where we ignore a named
entity’s type and annotate the real named entities with square brackets:

[Paris Hilton] stayed at the [Hilton] in [Paris] and
[James Clerk Maxwell] was educated at [Edinburgh] and [Cambridge]

We formalise the annotation of a single sentence as a set A. Each element a ∈ A represents a
named entity as a span through an ordered pair of zero-based indices (a named entity ⟨a, b⟩ starts at
position a and ends at b, including b). Assume a computational model predicts the following named
entities: {⟨0, 1⟩, ⟨5, 5⟩, ⟨9, 10⟩, ⟨15, 15⟩}

1. Compute the precision, recall, and F1-score of this annotation.

2. Provide an annotation that would give a precision of more than 0.8 and a recall of less than
0.2, and use your answer to explain why the F1-score uses the harmonic mean.

3. While the F1-score is a better metric than precision and recall in isolation, there are other
flaws all three metrics suffer from. What, specifically in the context of span identification,
does it fail to capture about the model’s predictions provided above?

Solution

1. There are 3 true positives, 1 false positive and 3 false negatives. Therefore, the precision is
0.75, the recall is 0.5, and the F1-score is 2 · 0.75·0.5

0.75+0.5 = 0.6.

2. We could, for example, use a simple annotation with perfect precision, such as {⟨0, 1⟩} that
gives a recall of 1

6 , and an F1-score of approximately 0.286. This F1-score lies far below the
arithmetic mean of the two, and lies, relatively speaking, closer to the recall compared to
(1) above. This illustrates why the harmonic mean is used: it penalises extreme values for
either precision or recall. This is desirable since a trivial prediction – such as predicting all
candidates, or no candidates at all – can yield a high recall or a high precision, but not both.

3. The span ⟨9, 10⟩ is incorrect, but “James Clerk” is a part of a named entity. Nonetheless, this
partial match between the prediction and the target is not captured by the current metrics.

Question 2. Text generation with a language model

We are given the following corpus, modified from J&M (Chapter 3 in the 3rd edition):

<s> language is awesome </s>
<s> language is awesome </s>
<s> language and students </s>
<s> awesome students like language </s>

1

1. Using a bigram language model without smoothing, generate 4 sentences, starting from ‘<s>’.
To generate sentences manually, randomly choose a real number between 0 and 1, and use the
cumulative probabilities of words in the vocabulary to select a word from the language model.
For example, if there are two words in the vocabulary with non-zero conditional probabilities
P (one|<s>) = 0.25 and P (two|<s>) = 0.75, then choosing a random number between 0 and
0.25 would result in ‘one’, whereas a random number between 0.25 and 1 would result in ‘two’.

2. How does the lack of smoothing impact the novelty of the sentences generated?

3. How does the nature of the corpus impact the lengths of the generated sentences?

Prefix (Non-zero) Conditional probabilities

<s> P (language|<s>) = 3
4

P (awesome|<s>) = 1
4

and P (students|and) = 1
awesome P (</s>|awesome) = 2

3
P (students|awesome) = 1

3

is P (awesome|is) = 1
language P (is|language) = 1

2
P (and|language) = 1

4
P (</s>|language) = 1

4

like P (language|like) = 1
students P (</s>|students) = 1

2
P (like|students) = 1

2

Table 1: The non-zero conditional probabilities of the language model discussed in Exercise 2.1.

Solution

1. Table 1 provides the non-zero conditional probabilities that can be used to generate sentences
for this question. Some example sentences that can be generated, are:

• <s> awesome students like language and students like language </s>

• <s> awesome students </s>

• <s> language </s>

• <s> language is awesome students like language </s>

• <s> language is awesome </s>

• <s> language </s>

• <s> awesome </s>

• <s> language </s>

• <s> awesome </s>

• <s> language and students like language is awesome students like language and students
like language and students like language is awesome students like language </s>

2. The language model can generate sentences that are novel (i.e. that were not in the training
corpus). In fact, 9 out of 10 example sentences above were not in the training corpus. However,
every bigram does exist in the training corpus, so the language model is severely limited in
the sentences it can generate.

3. The average lengths of the training corpus (5.25) and the generated sentences above (5.7) do
not vary greatly, but the standard deviations—0.4 and 6.5, respectively—do. This is due to the
presence of words that can appear in multiple positions in the sentence: ‘awesome’, ‘language’
and ‘students’. As a result, a sentence can end after one word, or can restart when one would
expect it to end.

2

Question 3. Smoothing

1. Compute P (awesome|is) and P (like|is) for (a) the bigram language model without smoothing,
(b) with add-1 smoothing, and (c) using interpolation.

2. Which values of λ1 and λ2 did you select, and why?

3. As discussed in J&M section 3.5, one would normally select the values for λ1 and λ2 based
on a held-out corpus. What are the characteristic features of a corpus that would result in
λ2 ≪ λ1?

4. Mention a disadvantage of using interpolation to do smoothing, by referring to the bigrams ‘is
awesome’ and ‘is like’. Identify another type of smoothing that overcomes the shortcomings
you described.

Solution

1. The probabilities are provided below:

PMLE(awesome|is) = C(is, awesome)

C(is)
=

2

2
= 1 (1)

P+1(awesome|is) = C(is, awesome) + 1

C(is) + V
=

2 + 1

2 + 8
= 0.3 (2)

PINT(awesome|is) = λ1PMLE(awesome) + λ2PMLE(awesome|is) = λ1
3

21
+ λ2

2

2
(3)

PMLE(like|is) =
C(is, like)

C(is)
=

0

2
= 0 (4)

P+1(like|is) =
C(is, like) + 1

C(is) + V
=

0 + 1

2 + 8
= 0.1 (5)

PINT(like|is) = λ1PMLE(like) + λ2PMLE(like|is) = λ1
1

21
+ λ2

0

2
(6)

2. The graph illustrates the impact of different values for λ1 and λ2. There is not one correct
setting, but to avoid stealing too much from seen events, one could set λ1 < 0.5. On the other
hand, if one’s goal is to create a language model that is likely to generate events unseen during
training, λ2 ≪ λ1. Notice that with add-1 smoothing the language model is more likely to
generate ‘is like’ than with interpolation smoothing, due to the low unigram probability of
‘like’.

0.0 0.2 0.4 0.6 0.8 1.0
1

0.0

0.2

0.4

0.6

0.8

1.0

p(
w

2|w
1)

p(awesome|is)
p(like|is)

3. If the held-out corpus (on which we estimate our parameters) mostly contains bigrams from
the training corpus, that would lead to λ2 ≫ λ1: smoothing is hardly needed. On the other
hand, a held-out corpus for which a lot of bigrams do not appear in the training corpus would
lead to λ2 ≪ λ1. Notice that including words in the held-out corpus that do not exist in the
training corpus does not favour a higher or lower value for λ1 or λ2.

4. Linear interpolation linearly combines the unigram and bigram probabilities independent of
the bigram that we compute probabilities for, while ‘is awesome’ appears in the training corpus
and ‘is like’ does not. For the former bigram it might be more reliable to trust the bigram

3

language model, while for the latter one, we would like to borrow from the unigram model.
A smoothing method that improves upon this is Katz backoff smoothing that relies on a
discounted probability P ∗(w2|w1) if a bigram has been seen before, and relies on the unigram
model, otherwise.

Question 4. Document classification

The following are features extracted from a set of short movie reviews, and the genre of the movie.

n Document Class

1 love, fast, romantic, couple romance

2 romantic, fast, fun, fun comedy

3 fast, violence, shoot, furious, fast action

4 couple, fun, fast, fast, furious action

5 fun, violence, fun, romantic comedy

6 fast, fun ?

1. What is the MLE estimate of the prior probability P (action)?

2. What is PMLE(fast|action)?

3. Apply add-α smoothing. Assuming that α = 0.7, what is Padd−α(fast|action)?

4. Assuming d is the sixth document from the table above, compute the ratio P (comedy|d)
P (action|d) with

the same smoothing method applied. What does this ratio tell us about the document’s
classification?

5. Describe the type of classification model one would get for an extremely large value of α. Could
changing α change the classification of our document number 6?

Solution

1. 2
5 = 0.4

2. 4
10 = 0.4

3. 4+0.7
10+8·0.7 ≈ 0.30

4. P (comedy|d)
P (action|d) =

P (d|c)P (c)
P (d)

P (d|a)P (a)
P (d)

= P (d|c)P (c)
P (d|a)P (a) =

P (fast|c)P (fun|c)P (c)
P (fast|a)P (fun|a)P (a) =

1.7
13.6 ·

4.7
13.6 ·

2
5

4.7
15.6 ·

1.7
15.6 ·

2
5

= 1.32

This ratio indicates that the movie review is a bit more likely to be from a comedy than from
an action movie.

5. As α grows, the likelihood of any feature for any class would approach α
αV , where V is our

vocabulary size. The more equal the likelihood of any two features is, the larger the impact of
the prior probability of the class on the classification. Eventually, the classifier would always
predict the most frequent class.
In this specific case, changing α would, however, not change the classification of our document
due to equal prior probabilities of the classes comedy and action.

4

Bonus question

We said in the lecture that relative frequency estimation is a form of maximum likelihood estimation
(MLE). Here we want you to prove that this is true for a categorical random variable.

Let X be a categorical random variable that can take values 1, . . . , k. Assume we have N
independent samples x1, . . . , xN from X where each xi takes one of the k values. We consider a
family of distributions P̂θ(X = x) = θx with parameters θ. The likelihood of the data as function
of θ is:

L(θ) =

N∏
i=1

P̂θ(X = xi) =

N∏
i=1

θxi
(7)

Show that PMLE(X = x) = C(x)
N where C(x) is the count of x in our sample x1, . . . , xN .

Hint you might want to use the following fact, known as Gibbs’ inequality (see also Lecture 6b):
If P and Q are distributions over the random variable X, then

−
k∑

i=1

P (X = i) logP (X = i) ≤ −
k∑

i=1

P (X = i) logQ(X = i) (8)

This holds with equality if and only if P (X = i) = Q(X = i) for all i.

Solution Let us first rephrase the likelihood in terms of counts:

L(θ) =

n∏
i=1

P̂θ(X = xi) =

k∏
x=1

P̂θ(X = x)C(x) (9)

Note that the product now ranges over the values that X can take.
Taking the logarithm of L will make working with the likelihood easier and this does not change

which parameters attain the maximum because the logarithm is a monotonic function.

logL(θ) = log

k∏
x=1

P̂θ(X = x)C(x) =

k∑
x=1

C(x) log P̂θ(X = x) (10)

This starts to look a bit like the definition of cross entropy. Note that if we divide logL(θ) by the
number of observations N , that this does not influence where logL(θ) attains its maximum either:

1

N
logL(θ) =

1

N

k∑
x=1

C(x) log P̂θ(X = x) =

k∑
x=1

C(x)

N
log P̂θ(X = x) (11)

Let us call P̃ (X = x) = C(x)
N the empirical distribution. It is easy to see that P̃ (X = x) is indeed

a distribution. That means that we can write eq 11 as the negative cross-entropy between the
empirical distribution and our estimate P̂θ:

1

N
logL(θ) =

k∑
x=1

P̃ (X = x) log P̂θ(X = x) (12)

We can now substitute P̃ for P and P̂θ for Q in Gibbs’ inequality. We multiply both sides with −1
to flip the direction of the inequality and arrive at:

k∑
x=1

P̃ (X = x) log P̃ (X = x) ≥
k∑

x=1

P̃ (X = x) log P̂θ(X = x) =
1

N
logL(θ) (13)

5

Note that the left side of the inequality is also a log likelihood of the data (divided by N), namely
under the distribution P̃ . This means that no matter what parameter values θ we choose for P̂θ,
it cannot give the data higher log likelihood than P̃ . That is, the log likelihood (and therefore

the likelihood) attains a maximum at P̃ and therefore P̃ (X = x) = C(x)
N is a maximum likelihood

estimate. Actually this is also the only maximum (eq 8 holds with equality if and only if P̂θ = P̃).

6

